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ABSTRACT 

 

Identification and qualitative comparison of sensitivity analysis methods that have been 

used across various disciplines, and that merit consideration for application to food safety risk 

assessment models, are presented in this paper.  Sensitivity analysis can help in identifying 

critical control points, prioritizing additional data collection or research, and verifying and 

validating a model.  Ten sensitivity analysis methods, including four mathematical methods, five 

statistical methods and one graphical method, are identified.  The selected methods are compared 

on the basis of their applicability to different types of models, computational issues such as 

initial data requirement and complexity of their application, representation of the sensitivity, and 

the specific uses of these methods.  Applications of these methods are illustrated with examples 

from various fields.  No one method is clearly best for food safety risk models.  In general, use of 

two or more methods, preferably with dissimilar theoretical foundations, may be needed to 

increase confidence in the ranking of key inputs.   

 

Key Words:  Sensitivity analysis methods, food safety, microbial risk assessment, critical 

control points. 
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1.0   INTRODUCTION. 

Concern for the safety of the food supply is motivated by recognition of the significant 

impact of microbial food borne diseases in terms of human suffering and economic costs to the 

society and industry, and an increasing global food trade (Lammerding, 1997).  Mead et al.  

(1999) have reported that food borne disease results in 76 million human illnesses in the United 

States each year, including 325,000 hospitalizations and 5,200 deaths.  ERS (2001) estimated the 

cost of food borne disease to be $6.9 billion annually.  Food safety is gaining increased attention 

because of several trends.  New food borne pathogens are emerging (Buchanan, 1996).  Larger 

batch production, distribution, and longer shelflife of food products contribute to broader 

exposure to contaminating events.  The proportion of food consumed that is supplied by food 

services is growing and this reduces consumer control over food handling and processing.  

Demand for safer food is growing as consumers are becoming more affluent, live longer, and are 

better informed about diet (McKone, 1996).  International trade in food also can introduce new 

sources of risks to food safety, such as cattle or meat acquiring infection overseas.   

 

Food safety regulatory agencies are taking a new approach to ensuring the safety of food 

supply based upon the Hazard Analysis Critical Control Points (HACCP) system (Seward, 

2000).  One step in the HACCP system is to determine critical control points (CCP) where risk 

management efforts can be focused.  Food safety depends on many factors, such as composition 

and preparation of the product, process hygiene, and storage and distribution conditions 

(Zwietering and Gerwen, 2000).  Given data gaps and the complexity and dynamic nature of the 

food processing, transportation, storage, distribution, and preparation system, determining which 
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of the many nodes in the farm-to-table pathway constitute CCPs and represents a substantial 

analytical challenge (Rose, 1993; Buchanan et al., 2000). 

 

Sensitivity analysis of risk models can be used to identify the most significant exposure 

or risk factors and aid in developing priorities for risk mitigation.  For example, Baker et al. 

(1999) identified sensitivity analysis as one of the principal quantitative techniques used for risk 

management in the United Kingdom.  Jones (2000) indicated that sensitivity analysis can provide 

the basis for planning adaptation measures to mitigate the risk of climate change.  Sensitivity 

analysis can be used as an aid in identifying the important uncertainties for the purpose of 

prioritizing additional data collection or research (Cullen and Frey, 1999).  Furthermore, 

sensitivity analysis can play an important role in model verification and validation throughout 

the course of model development and refinement (e.g., Kleijnen, 1995; Kleijnen and Sargent, 

2000; and Fraedrich and Goldberg, 2000).   Sensitivity analysis also can be used to provide 

insight into the robustness of model results when making decisions (e.g., Phillips et al., 2000; 

Ward and Carpenter 1996; Limat et al., 2000; Manheim 1998; and Saltelli et al., 2000).  

Sensitivity analysis methods have been applied in various fields including complex engineering 

systems, economics, physics, social sciences, medical decision making, and others (e.g., Oh and 

Yang, 2000; Baniotopoulos, 1991; Helton and Breeding, 1993; Cheng, 1991; Beck et al., 1997; 

Agro et al., 1997; Kewley et al., 2000; Merz et al., 1992). 

1.1  Objectives and Motivation. 

The objectives of this paper are to identify, review, and evaluate sensitivity analysis 

methods for applicability to risk assessment models typical of those used, or expected to be used, 
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in the near future for food safety risk assessment.  As the key objective in this task is to benefit 

from knowledge across many disciplines, the literature review extends well beyond food safety 

to include many other fields.  This objective serves as an aid in identifying potential CCPs along 

the farm-to-table continuum, to inform decisions about food safety research and data acquisition 

priorities, and to contribute to the development of sound food safety regulations. 

1.2  Importance of Risk Assessment in Food Safety. 

The objective of the risk assessment is to answer three risk questions (Kaplan and 

Garrick, 1981):   

• What can go wrong? 

• How likely is that to happen?  

• What would be the consequences if it did go wrong?  

Risk assessment provides structured information that allows decision makers to identify 

interventions that can lead to public health improvement or to avoid future problems.    

 

The HACCP system is used to prevent hazards associated with foods.  The best 

information of the risk from such hazards that industry may have today is qualitative, such as 

whether a hazard presents a high, medium, or low risk (WHO, 2001).  The outcome of a 

HACCP-based system should be improved food safety assurance, measured by reduction in risk 

to the consumer and not merely a reduction in the level of a hazard in a food (Hathaway, 1995).  

Risk assessment can be used to determine which hazards are essential to control, to reduce, or to 

eliminate (Buchanan, 1995; Hathaway, 1995; and Notermans et al., 1995).  Therefore, risk 

assessment can help in developing more effective HACCP plans. 
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Risk assessments can play an important role in international trade by ensuring that 

countries establish food safety requirements that are scientifically sound and by providing a 

means for determining whether different standards provide equivalent levels of public health 

protection (WHO, 2001).  Without a systematic risk assessment, countries may set requirements 

that are not related to food safety and can create artificial barriers to trade. 

1.3  Risk Assessment Framework. 

As defined by the Codex Alimentarius Commission (CAC), risk assessment is a 

scientifically based process consisting of four main steps:  hazard identification, hazard 

characterization, exposure assessment, and risk characterization (FAO, 1999).  These steps are 

similar to those defined in the risk analysis framework of the National Academy of Science 

(NRC, 1983).  Each of these four steps is described briefly according to CAC definitions. 

 

• Hazard Identification.   Hazard identification involves identification of biological, 

chemical, and physical agents capable of causing adverse health effects and that may be 

present in a particular food or group of foods. 

 

• Hazard Characterization.   Hazard characterization is the qualitative and/or quantitative 

evaluation of the nature of the adverse health effects associated with biological, chemical, 

and physical agents that may be present in food.  Hazard characterization may or may not 

include dose-response assessment. 
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• Exposure Assessment.   Exposure assessment is the qualitative and/or quantitative 

evaluation of the likely intake of biological, chemical, and physical agents via food as 

well as exposures via other sources, if relevant. 

 

• Risk Characterization.   Risk characterization involves qualitative and/or quantitative 

estimation, including attendant uncertainties, of the probability of occurrence and severity 

of known or potential adverse health effects in a given population based on hazard 

identification, hazard characterization, and exposure assessment. 

1.4  Important Issues in Food Safety Modeling. 

There are many important issues in modeling as applied to risk assessment that motivate 

the need for sensitivity analysis and that illustrate the key challenges that sensitivity analysis 

faces or that can be addressed by sensitivity analysis.  Cullen and Frey (1999) discuss issues such 

as purpose of models, model extrapolation, inappropriate application of models, complex 

models, and model verification and validation. 

  1.4.1  Purpose of the Model. 

The purpose of a model is to represent as accurately as necessary a system of interest.  A 

system is typically comprised of many components.  All modeling involves decisions regarding 

aggregation and exclusion.  Aggregation refers to simplified representation of complex real 

world systems.  Exclusion refers to a decision to omit any portions that are judged not to be 

important with respect to modeling objectives (Cullen and Frey, 1999). 
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The reason that risk models are developed is to serve as an aid in decision making.  

Models are developed for different purposes, often with different decision making objectives in 

mind.  For example, three different objectives are addressed by screening analysis models, 

research models, and assessment/decision making models, respectively.   

 

Screening analysis is usually based on simple models that are not likely to underestimate 

the risk.  The purpose of this analysis is usually to help the decision maker with routine 

regulatory decisions.  Screening methods are intended to help identify exposure pathways that 

are not important and to do so with a great deal of confidence.  Screening methods cannot be 

used to prove that a particular exposure pathway is important.  Rather, they can identify exposure 

pathways that should receive priority for further evaluation and analysis.  Because screening 

models are conservative, they are designed to provide some "false positives." This means that 

they will often provide results indicating that a exposure pathway is of concern, but later analysis 

with more refined assumptions or models may reveal less of a problem.  A key advantage of 

screening models is that they are often easier to use than more refined models.  Screening models 

typically have fewer input data requirements and involve less complex calculations.   

 

Research models are intended to improve understanding of the function and structure of 

real systems.  They allow a researcher to explore possible and plausible functional relationships 

and may involve many detailed mechanisms.  Research models may be complicated and may not 

be aimed at any particular risk management end point.  As such, they may have large input data 

requirements, be difficult to execute, and provide output not directly relevant to a specific risk 
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management objective.  However, such models can be very helpful in improving fundamental 

insights regarding risk processes and in learning lessons useful for further model development. 

 

Refined assessment models are intended to serve as tools for decision making, such as for 

rule-making or regulatory compliance purposes where screening analyses are inadequate.  These 

models are generally complex and more accurate than screening models.  Refined models are 

developed with at least some attention to risk management application.  Compared to screening 

models, refined models typically have greater data requirements and require more time and 

experience to apply. 

 

Sensitivity analysis is important for all three types of models.  In the context of this 

discussion, refined risk models are perhaps the most relevant.  Sensitivity analysis can be used to 

evaluate how robust risk estimates and management strategies are to model input assumptions 

and can aid in identifying data collection and research needs.   

  1.4.2  Complex Models. 

A model can be small yet complex.  Model size should not be confused with model 

complexity.  Complex systems are often hierarchies, which can be described in terms of the 

"span" of each level in the hierarchy and the number of levels (Reed and Afjeh, 2000; Simon, 

1996). 

 

Food Safety Risk Models (FSRMs) typically:  (1) are nonlinear; (2) contain discrete 

inputs; (3) contain thresholds; (4) contain multiple pathways; and (5) are modular.  The nonlinear 

and threshold features imply that interactions are important.  For example, if temperature is low 



 10

enough, then there may be no microbial growth, but once temperature exceeds a threshold, then 

the model may predict a nonlinear response that depends on several model inputs.  The 

modularity feature means that computations may take place in separate modules of the models, 

and only a selected set of aggregated results may be passed from one module to another. 

  1.4.3  Model Verification and Validation. 

Model verification is a process of making sure that the model is doing what it is intended 

to do.  Sensitivity analysis can be helpful in verification.  If a model responds in an unacceptable 

way to changes in one or more inputs, then troubleshooting efforts can be focused to identify the 

source of the problem. 

 

Model validation ideally involves comparison of model results to independent 

observations from the system being modeled.  Generally, in most risk assessments, complete 

validation is not possible because of lack of sufficient observational data.  Risk assessment 

models usually predict rare events.  For example, in radiation exposure assessments, model 

validation may be nearly impossible due to extremely low levels of radionuclide concentrations 

in the environment or because the time periods considered by the model are prohibitively long 

(Hoffman and Miller, 1983).  Cullen and Frey (1999) discuss partial validation of a model when 

observational data are available for only a part of the modeling domain. 

 

  Sensitivity analysis can be used to help develop a "comfort level" with a particular 

model.  If the model response is reasonable from an intuitive or theoretical perspective, then the 

model users may have some comfort with the qualitative behavior of the model even if the 

quantitative precision or accuracy is unknown. 
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  1.4.4  Model Extrapolation. 

A model is applicable within the specific set of inputs and outputs associated with the 

data used for calibration or validation of the model.  Model extrapolation involves making 

predictions for a situation beyond the range of calibration or validation of the model.  For 

example, Guassian-plume-based air dispersion models are applicable only for distances up to 

about 20 km or 50 km from the emission source.  The model should not be used to characterize 

long-range transport over hundreds of kilometers.  

 

Empirical models such as ones developed from regression analysis are generally based on 

a specific data set.  Regression analysis may be based on arbitrary functions to approximate 

relationships between the data.  However, there may not be any theoretical basis for the 

functional relationship selected.  In such a situation, if the inputs used are outside the original 

data set from which the regression model was developed then the output may not valid.  There 

are two types of extrapolations.  Explicit extrapolation involves making predictions for values of 

inputs outside the range of values for which the model was calibrated or validated.  Hidden 

extrapolation involves specifying combinations of inputs for which validation has not been done, 

even though each of the input values fall within the range of values that have been tested.  If the 

functional form of the relationship between the output and the inputs of the model is based on 

sound theoretical assumptions, then the model may perform reasonably well when extrapolated.  

Sensitivity analysis can be used to reveal how the model performs when the model is 

extrapolated. 
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1.5  Sensitivity Analysis Methods. 

Sensitivity analysis methods can be classified in a variety of ways.  In this report, they are 

classified as:  (1) mathematical; (2) statistical; and (3) graphical.  Other classifications focus on 

the capability, rather than the methodology, of a specific technique (e.g., Saltelli et al., 2000).  

Classification schemes aid in understanding the applicability of a specific method to a particular 

model and analysis objective.  Here, the focus is on sensitivity analysis techniques applied in 

addition to the fundamental modeling technique.  For example, an analyst may perform a 

deterministic analysis, in which case a mathematical method, such as nominal range sensitivity 

can be employed to evaluate sensitivity.  Alternatively, an analyst may perform a probabilistic 

analysis, using either frequentist or Bayesian frameworks, in which case statistical-based 

sensitivity analysis methods can be used (e.g., Cullen and Frey, 1999; Box and Tiao, 1992; 

Saltelli et al., 2000; Weiss, 1996). 

  1.5.1  Mathematical Methods for Sensitivity Analysis. 

Mathematical methods assess sensitivity of a model output to the range of variation of an 

input.  These methods typically involve calculating the output for a few values of an input that 

represent the possible range of the input (e.g., Salehi et al., 2000).  These methods do not address 

the variance in the output due to the variance in the inputs, but they can assess the impact of 

range of variation in the input values on the output (Morgan and Henrion, 1990).  In some cases, 

mathematical methods can be helpful in screening the most important inputs (e.g., Brun et al., 

2001).  These methods also can be used for verification and validation (e.g., Wotawa et al., 

1997) and to identify inputs that require further data acquisition or research (e.g., Ariens et al., 
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2000).  Mathematical methods evaluated here include nominal range sensitivity analysis, break-

even analysis, difference in log odds ratio, and automatic differentiation. 

  1.5.2  Statistical Methods for Sensitivity Analysis. 

Statistical methods involve running simulations in which inputs are assigned probability 

distributions and assessing the effect of variance in inputs on the output distribution (e.g., 

Andersson et al., 2000; Neter et al., 1996).  Depending upon the method, one or more inputs are 

varied at a time.  Statistical methods allow one to identify the effect of interactions among 

multiple inputs.   

 

The range and relative likelihood of inputs can be propagated using a variety of 

techniques such as Monte Carlo simulation, Latin hypercube sampling, and other methods.  

Sensitivity of the model results to individual inputs or groups of inputs can be evaluated by 

variety of techniques (Cullen and Frey, 1999).  Greene and Ernhart (1993), Fontaine and 

Jacomino (1997), and Andersson et al. (2000) give examples of the application of statistical 

methods.  The statistical methods evaluated here include regression analysis, analysis of 

variance, response surface methods, Fourier amplitude sensitivity test, and mutual information 

index. 

  1.5.3  Graphical Methods for Sensitivity Analysis. 

Graphical methods give representation of sensitivity in the form of graphs, charts, or 

surfaces.  Generally, graphical methods are used to give visual indication of how an output is 

affected by variation in inputs (e.g., Geldermann and Rentz, 2001).  Graphical methods can be 

used as a screening method before further analysis of a model or to represent complex 
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dependencies between inputs and outputs (e.g., McCamly and Rudel, 1995).  Graphical methods 

can be used to complement the results of mathematical and statistical methods for better 

representation (e.g., Stiber et al., 1999; Critchfield and Willard, 1986).  

1.6  Organization of the Report. 

 Section 2 identifies, describes, and evaluates ten selected sensitivity analysis methods.  

Section 3 presents a comparison the methods.  Conclusions are given in Section 4. 

 

2.0 SENSITIVITY ANALYSIS METHODS. 

This section identifies sensitivity analysis methods used across various disciplines.  

Reference materials, such as journals, reports, books, and the World Wide Web were collected 

from various fields including medical decision making, risk analysis, environmental science, 

engineering, economics, ecology, statistics, health science, microbiology and food science.  

Methods that were applied on models comparable to risk assessment models were identified for 

evaluation.  The methods and specific applications of each method are demonstrated.  Strengths 

and limitations of the methods are noted in brief.   

  2.1  Nominal Range Sensitivity. 

Nominal range sensitivity method is also known as local sensitivity analysis or threshold 

analysis (Cullen and Frey 1999; Critchfield and Willard, 1986).  This method is applicable to 

deterministic models.  It is usually not used for probabilistic analysis.  One use of nominal 

sensitivity analysis is as a screening analysis to identify the most important inputs to propagate 
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through a model in a probabilistic framework (Cullen and Frey, 1999).  Nominal range 

sensitivity can be used to prioritize data collection needs as demonstrated by Salehi et al. (2000). 

  2.1.1  Description. 

Nominal range sensitivity analysis evaluates the effect on model outputs exerted by 

individually varying only one of the model inputs across its entire range of plausible values, 

while holding all other inputs at their nominal or base-case values (Cullen and Frey, 1999).  The 

difference in the model output due to the change in the input variable is referred to as the 

sensitivity or swing weight of the model to that particular input variable (Morgan and Henrion, 

1990).  The sensitivity also can be represented as a positive or negative percentage change 

compared to the nominal solution.  The sensitivity analysis can be repeated for any number of 

individual model inputs.   

  

The results of nominal range sensitivity are most valid when applied to a linear model.  In 

such cases, it would be possible to rank order the relative importance of each input based upon 

the magnitude of the calculated sensitivity measure as long as the ranges assigned to each 

sensitive input are accurate.  However, for a non-linear model, the sensitivity of the output to a 

given input may depend on interactions with other inputs, which are not considered.  Thus, the 

results of nominal range sensitivity are potentially misleading for nonlinear models. 

  2.1.2  Application. 

Two examples of the use of nominal range sensitivity analysis are given here.  In the first, 

nominal range sensitivity was applied as described here to an exposure assessment problem for 

flounder in a contaminated harbor (Dakins et al., 1994).  The selection of inputs evaluated in the 
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sensitivity analysis, and the range of values assigned to those inputs, was based upon literature 

review.  The absolute different in burden of PCB in flounder was the key measure of sensitivity.  

An absolute difference of less than 0.5 µg PCB per gram of body weight was considered to be 

non-sensitive.   

 

In the second example, a conditional nominal range sensitivity analysis was performed 

(Sinicio et al., 1997).  The objective of the analysis was to determine the allowable safe storage 

time for grain wheat as a function of grain moisture content and temperature conditioned upon 

key assumptions of a ventilation system.  The intent was to recommend airflow rates and fan 

control strategies to properly aerate the stored grains.  The sensitivity analysis was conditioned 

on two different assumptions regarding the airflow rate and two different assumptions regarding 

the air temperature rise in the fan, leading to four different cases.  For each case, three specific 

inputs were each varied over a nominal range, and the impact on the key model output, allowable 

storage time elapsed, was evaluated.  Specific heat of the wheat was observed to be the most 

sensitive input for each of the four cases. 

  2.1.3  Advantages. 

Nominal range sensitivity analysis is a relatively simple method that is easily applied.  It 

works well with linear models and when the analyst has a good idea of plausible ranges that can 

be assigned to each selected input.  The results of this approach can be used to rank order key 

inputs only if there are no significant interactions among the inputs, and if ranges are properly 

specified for each input. 
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  2.1.4  Disadvantages. 

Nominal sensitivity analysis addresses only a potentially small portion of the possible 

space of input values, because interactions among inputs are difficult to capture (Cullen and Frey 

1999).  Conditional sensitivity analysis may be used to account for correlation between inputs or 

nonlinear interactions in model response, but it has limitations because of the combinational 

explosion of possible cases.  Potentially important combined effects on the decision (or output) 

due to small changes in a few or all inputs together are not shown by nominal sensitivity analysis 

For other than linear models, it is not clear that nominal range sensitivity can provide a reliable 

rank ordering of key inputs. 

2.2  Difference in Log-Odds Ratio (∆∆ LOR). 

 The difference in the log odds ratio (∆LOR) method is a specific application of nominal 

range sensitivity methodology.  The ∆LOR is used when the output is a probability.  For 

example, Song et al. (2000) used ∆LOR for identifying the most important inputs so that 

additional data collection and research can be prioritized.   

  2.2.1  Description. 

 The odds or odds ratio of an event is a ratio of the probability that the event occurs to the 

probability that the event does not occur (Walpole and Myers, 1993).  If an event has a 

probability of occurrence as P, then the odds ratio is P/(1-P).  The log of the odds ratio or logit is 

just another convenient way of rescaling probabilities (Menard, 1995).  Log odds are considered 

by some to be the preferred transformation of probability because they are putatively easier to 

understand (Christensen, 1990).   
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The ∆LOR method is used to examine the change in the output as: 
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If ∆LOR is positive, changes in one or more inputs enhance the probability of the specified event.  

If ∆LOR is negative, then the changes in the inputs cause a reduction in the probability of the 

event occurring or increase the probability of the event not occurring.  The greater the magnitude 

of ∆LOR, the greater is the influence of the input (Stiber et al., 1999).   

2.2.2 Application 

The ∆LOR method was used by Stiber et al. (1999) to identify key inputs to a model of 

groundwater decontamination via reductive dechlorination.  The model inputs referred to as 

“evidences”, included site parameters such as temperature, pH, and whether various specific 

chemicals were found to be present, such as oxygen, hydrogen, chloride, dichlorethene (DCE), 

methane, and others.  The key model output is the probability that anaerobic degradation of 

trichloroethene (TCE) via reductive dechlorination is occurring.  An expert judgment-based 

approach was used to estimate the output probability.  A total of 14 possible pieces of “evidence” 

were considered in the analysis.  The results of the ∆LOR analysis of Stiber et al. (1999) are 

given in Figure 1.  For example, if there is no evidence that oxygen is present then there is 

increased probability of anaerobic processes occurring.  If chloride or DCE is present, then there 

is positive evidence of the degradation of TCE.   From the sensitivity analysis, it appears that 

evidence regarding DCE is the most important determinant of anaerobic degradation of TCE, 
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because changes in evidence for this particular input lead to the largest differences in the log-

odds ratio. 

  2.2.3  Advantages. 

The ∆LOR method is a useful measure of sensitivity when the model output is a 

probability (Menard, 1995). 

  2.2.4  Disadvantages. 

The ∆LOR method can only be used when the output is in terms of probability (Menard, 

1995).  It suffers from other drawbacks similar to nominal range sensitivity analysis.  For 

example, similar to nominal range sensitivity analysis, ∆LOR cannot account for nonlinear 

interactions between or among inputs.  Similar to nominal range sensitivity analysis, the 

significance of differences among the sensitivities can be difficult to determine for nonlinear 

models and correlated inputs, making it potentially difficult to rank order key inputs. 

2.3  Break-Even Analysis. 

Break-even analysis is more of a concept than a specific method.  Broadly speaking, the 

purpose of break-even analysis is to evaluate the robustness of a decision to changes in inputs 

(von Winterfeldt and Edwards, 1986). 

  2.3.1  Description. 

Break-even analysis involves finding values of inputs that provide a model output for 

which a decision maker would be indifferent among the two or more risk management options.  

The combinations of values of inputs for which a decision maker is indifferent to the decision 
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options are known as switchover or break-even values.  Then, in order to assess the robustness of 

a choice between the options, one can evaluate whether the possible range of values of the model 

inputs corresponds with only one of the two choices (Morgan and Henrion, 1990).  Indifference 

of a decision maker to the two choices is often represented by a break-even line or indifference 

curve such as an iso-risk curve.  Ambiguity regarding selecting a particular choice exists if the 

uncertainty range associated with an output may correspond to either of the two or more possible 

choices.  Different options that result in equivalent levels of risk reduction also can be identified 

so that a decision maker can evaluate these options.  If there are more than two decision options, 

the analysis can get complex (von Winterfeldt and Edwards 1986). 

2.3.2 Application. 

Break-even analysis is often used in economics for purposes such as budget planning 

(Dillon, 1993).  Break-even analysis has also found applications in several other fields such as 

health care (Boles and Fleming, 1996).  Kottas and Lau (1978) describe the concept of stochastic 

break-even analysis.  Starr and Tapiero (1975) explain the use of break-even analysis with 

consideration of risk.   

 

As an example of a breakeven analysis, consider a choice between two medical treatment 

options:  medication versus an operation.  The patient’s valuation of the possible outcome of 

each option is represented with a utility function, and the probability of success of the operation 

is not known.  Figure 2 illustrates the combination of values for the utility of the medication and 

the probability of success of the operation that lead to a preference for medication, as in the 

upper left portion of the graph, or for the operation, as in the lower right portion of the graph.  

Along the indifference line, there is equal preference for both options.  If the patient has a high 
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utility for the outcome of the medication, and believes that the probability of success of the 

operation is low, then medication is clearly preferred.  If the range of uncertainty in the 

probability of success is large, and if the range of uncertainty encloses the indifference line, then 

it will be ambiguous as to what treatment option is preferred.  In the former case, a decision can 

be made that is robust to uncertainty.  In the latter case, more information is needed to reduce 

uncertainty in one or more of the inputs in order to make a decision with a high degree of 

confidence.  

  2.3.3  Advantages. 

The switchover or break-even point guides further modeling and elicitation.  If the range 

of uncertainty regarding an input encloses the break-even point, then that input will be important 

in making a decision; that is, there will be uncertainty regarding which decision to take.  In such 

a situation, further research can be directed so as to help the decision maker to narrow the range 

of uncertainty and make a decision with more confidence.  On the other hand, if the uncertainty 

regarding an input does not enclose the break-even point then there will be high confidence 

regarding the decision. 

  2.3.4  Disadvantages. 

Break-even analysis is not a straightforward method to apply.  Though it is a useful 

concept, its application is increasingly complex as the number of sensitive inputs increases (von 

Winterfeldt and Edwards, 1986).  There also is not a clear ranking method to distinguish the 

relative importance of the sensitive inputs. 
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2.4  Automatic Differentiation Technique. 

The automatic aifferentiation (AD) technique is an automated procedure for calculating 

local sensitivities for large models.  In AD, a computer code automatically evaluates first-order 

partial derivatives of outputs with respect to small changes in the inputs.  The values of partial 

derivatives are a measure of local sensitivity. 

  2.4.1  Description. 

Most existing sensitivity analysis methods based upon differentiation, such as numerical 

differential methods, have one or more of the following limitations:  inaccuracy in the results, 

high cost in human effort and time, and difficulty in mathematical formulation and computer 

program implementation (Hwang et al., 1997).  To overcome these limitations, AD techniques 

were developed.  AD is a technique to perform local sensitivity analysis and not a new method in 

itself.  In AD the local sensitivity is calculated at one or more points in the parameter space of 

the model.  At each point, the partial derivatives of the model output with respect to a selected 

number of inputs is evaluated. 

 

AD is implemented by pre-compilers that analyze the code of the complex model and 

then add instructions needed to compute first or higher order derivatives in an efficient manner to 

save computational time and reduce complexity (Kedem, 1980; Rall, 1980; Carmichael et al., 

1997).  The resulting expanded code is then complied with a standard compiler so that code can 

evaluate function values used in the model, outputs, and derivatives.  Automatic Differentiation 

in Fortran (ADIFOR) is one of the softwares used for implementation of AD (Bischof et al., 

1992, 1994 and 1996). 
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  2.4.2  Application. 

Automatic differentiation finds application in models that involve complex numerical 

differentiation calculations such as partial derivatives, integral equations, and mathematical 

series (Hwang et al., 1997).  It is used in fields such as air quality (Carmichael et al., 1997), 

aerodynamics (Issac and Kapania, 1997), mechanical structures (Ozaki et al., 1995), and others.   

Christianson (1999) used AD for verification of part of a model. 

 

As an example, Carmichael et al. (1997) applied ADIFOR to calculate the sensitivity of 

ambient air ozone concentration to air quality model inputs representing initial conditions, 

reaction rate constants, and others.  For this purpose, dimensionless sensitivity coefficients were 

calculated based upon the numerical partial derivative of ozone concentration with respect to a 

selected input, divided by the ratio of the values of the concentration and the input: 

Si,j = 
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  where,  

 Si,j = Normalized local sensitivity coefficients for ith chemical specie and jth input;  

∆Ci = The absolute change in the output concentration of ith chemical specie; 

∆αj = The absolute change in the jth input; 

αj = Values of model inputs; and  

Ci = Concentration of a chemical specie i at a given time. 
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The normalized local sensitivity coefficients were calculated for a 5-day simulation for 

two different meteorological scenarios.  The estimated ozone concentration was found to be most 

sensitive to the initial ozone concentrations in both scenarios, with normalized sensitivity values 

of 0.082 and 0.054 for the marine and land scenarios, respectively.  In contrast, the results were 

relatively insensitive to the initial NO concentration in both cases, as revealed by a normalized 

sensitivity coefficient of approximately 0.001.  Lumped sensitivities were also reported to give 

the global effect of a perturbation in a given input on the whole system.  Lumped sensitivity of a 

chemical specie is the summation of normalized local sensitivities at different time stages for that 

chemical specie. 

  2.4.3  Advantages. 

AD techniques, such as ADIFOR can be applied without having detailed knowledge of 

the algorithm implemented in the model.  ADIFOR does everything automatically once it is 

appended with the main code (Bischof et al., 1992).  AD is superior to finite difference 

approximations of the derivatives because numerical values of the computed derivatives are 

more accurate and computational effort is significantly lower (Bischof et al., 1992).  Hwang et 

al. (1997) observed CPU time saving of 57% by using AD for sensitivity analysis as compared to 

using a traditional method.  If the model is constantly modified and improved, then ADIFOR 

provides a convenient tool to easily accommodate such necessary model changes, which can be 

very difficult to do in the case of other techniques (Carmichael et al., 1997). 

  2.4.4  Disadvantages. 

The availability of AD technique may be limited to specific computer languages such as 

FORTRAN in the case of ADIFOR, requiring the user to provide FORTRAN code for the 
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model.  Because AD is a local technique, it suffers from the limitations of nominal range 

sensitivity analysis.  Furthermore, unlike nominal range sensitivity analysis, the possible range of 

values of the inputs is not considered.  The accuracy for sensitivity results is conditioned upon 

the numerical method used in the AD software.  Also, for nonlinear models, the significance of 

differences in sensitivity between inputs is difficult to determine, making the rank ordering of 

key inputs potentially difficult.  This method cannot be used if partial derivatives cannot be 

evaluated locally. 

2.5  Regression Analysis. 

Regression analysis can be employed as a probabilistic sensitivity analysis technique as 

demonstrated by Iman et al. (1985).  Regression analysis serves three major purposes:  (1) 

description of the relation between variables; (2) control of predictor variables for a given value 

of a response variable; and (3) prediction of a response based on predictor variables (Neter et al., 

1996; Sen and Srivastava, 1990). 

  2.5.1  Description. 

A relation between inputs and the output should be identified prior to regression analysis 

based on techniques such as scatter plots or upon understanding of the functional form of the 

model.  Methods, such as stepwise regression, can be used to automatically exclude statistically 

insignificant inputs.  The regression model may not be useful when extrapolating beyond the 

range of values used for each input when fitting the model (Devore and Peck, 1996). 

 

Regression analysis is most properly performed on an independent random sample of 

data.  The effect of inputs on the output can be studied using regression coefficients, standard 
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errors of regression coefficients, and the level of significance of the regression coefficients 

(Devore and Peck, 1996; Steel et al., 1997; Sen and Srivastava, 1990).  Regression analysis 

typically involves fitting a relationship between inputs and an output such as this linear one: 

 

Yi = βo + β1X1,i + β2X2,i + … + βmXm,i + εi  (2-2) 

  where, 

Yi  = ith output data point for ith input data points; 

Xj,i = ith input data point for the jth input; 

βj  = regression coefficient for the jth input; and  

ει  = error for the ith data point. 

 

Each term in the regression model can have a different basis function, which can be linear 

or nonlinear.  For a linear model, the regression coefficient βj, can be interpreted as the change in 

output Yi  when the input Xj,i for a given value of j increases by one unit and the values of all 

other inputs remain fixed (Devore and Peck, 1996).  Therefore, regression coefficients can be 

used as a form of nominal range sensitivity.  The deviation of the prediction of the regression 

model from the actual can be measured using the coefficient of multiple determination, R2.  R2 is 

a measure of the amount of variance in the dependent variable explained by the model (Draper 

and Smith, 1981).  A key assumption of least squares regression analysis is that the residuals are 

normally distributed. 

 

 Because the regression coefficients are estimated from a random sample of data, the 

coefficients themselves are random variables.  If the coefficient is not significantly different than 
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zero, then there is not a statistically significant linear relationship between the input and the 

output (Draper and Smith, 1981).   Conversely, if the coefficient is statistically significant, then 

there is stronger evidence of sensitivity.  To determine statistical significance, the standard error 

of the regression coefficient is estimated.  If the ratio of the value of the regression coefficient 

divided by its standard error is greater than a critical value, then the coefficient is deemed to be 

statistically significant.  The critical value is determined based upon the desired significance 

level (usually 0.05) and the degrees of freedom of the regression model (Devore and Peck, 

1996).  The magnitude of statistically significant regression coefficients can be used to help 

determine the ranking of the inputs according to their sensitivity if the inputs or the coefficients 

are normalized (or standardized) to remove dimensional effects (Neter et al., 1996; Iman et al., 

1985).  Neter et al. (1996) has suggested a transformation called correlation transformation 

which standardize the data such that the standardized regression coefficients fall between -1 and 

1.  The advantage of this transformation is that the round-off errors can be minimized and all 

regression coefficients have the same unit and hence, regression coefficients can be compared on 

equal basis 

 

In the case of forward stepwise regression analysis, the incremental change in the R2 

values is an indication of the significance of sensitivity of the output to each newly introduced 

input.  However, in the case of dependent or correlated inputs, the problem of multicollinearity 

can affect the robustness of the results of regression analysis  (Neter et al., 1996).  A few types of 

nonlinear models can be transformed into linear models in the case of logistic regression 

(Hosmer and Lemeshow, 1989).  Generalized linear models (GLM) provide flexibility to use 
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correlated input data and non-normal error distributions.  Logistic regression and Poisson 

regression are examples of GLM (McCullagh and Nelder, 1989; Searle, 1987). 

  2.5.2  Applications. 

Regression analysis as a sensitivity analysis method is applied in various fields such as 

veterinary science (Taylor et al., 1992), social sciences (Barrett et al., 1986), food sciences (Cliff 

et al., 1995), and food safety (Tienungoon et al., 2000).  McCarthy et al. (1995) used logistic 

regression for sensitivity analysis of a stochastic population model using logistic regression. 

 

As one example, Helton et al. (1995) used stepwise regression analysis for sensitivity 

analysis of a model for contamination of food pathways associated with a severe accident at a 

nuclear power station.  A probabilistic analysis was done and forward stepwise regression 

analysis was used to help identify which of the input distributions contributed most to 

uncertainty in the mean population dose.  The importance of inputs was indicated by the order in 

which inputs entered the regression model, the changes in R2 values with the entry of successive 

inputs in the regression model, and the standardized regression coefficients in the final regression 

model.  The stepwise regression analysis for an example output, the mean population dose, is 

shown in Table I.  The mean population dose is dominated by the variables PSMCS134, 

TFMCS, and PSMI131.  Collectively these three variables account for 86 percent of the observed 

variation.  The remaining seven variables contribute only an additional eight percent increase in 

the explanatory power of the model, and thus are relatively insensitive.  Regression coefficients 

for all these variables were statistically significant and variables with insignificant regression 

coefficients were excluded from the forward stepwise regression. 
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  2.5.3  Advantages. 

Regression techniques such as the ones discussed here allow evaluation of sensitivity of 

individual model inputs, taking into account the simultaneous impact of other model inputs on 

the result (Cullen and Frey, 1999).  Other regression techniques, such as those based upon the 

use of partial correlation coefficients, can evaluate the unique contribution of a model input with 

respect to variation in a selected model output (Brikes and Dodge, 1993).  Moreover, a rank 

regression approach may also be used.  In rank regression, the ranks of each input and the output 

are used instead of the sample values.  Rank regression can capture any monotonic relationship 

between an input and the output, even if the relationship is nonlinear.  Sample and rank 

regression methods are discussed elsewhere, such as by Neter et al. (1996), Iman et al. (1985), 

Brikes and Dodge (1993), and Kendall and Gibbons (1990). 

  2.5.4  Disadvantages. 

 The key potential drawbacks of regression analysis include:  possible lack of robustness 

if key assumptions of regression are not met, the need to assume a functional form for the 

relationship between an output and selected inputs, and potential ambiguities in interpretation. 

 

 Regression analysis works best if each input is statistically independent of every other 

input (Devore and Peck, 1996).  Furthermore, the residuals of a least squares regression analysis 

must be normally distributed and independent.  If these conditions are violated, the results of the 

analysis may not have a strict quantitative interpretation, but instead should be treated as 

providing conceptual or qualitative insights regarding possible relationships. 
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 The results of sample regression analysis can be critically dependent upon the selection 

of a functional form for the regression model (Neter et al., 1996).  Thus, any results obtained are 

conditioned upon the actual model used. 

 

 Regression analysis can yield results that may be statistically insignificant or counter 

intuitive (Neter et al., 1996).  The lack of a clear finding may be because the range of variation 

of that input was not wide enough to generate a significant response in the output.  Thus, 

regression results can be sensitive to the range of variation in the data used to fit the model and 

may not always clearly reveal a relationship that actually exists. 

2.6   Analysis of Variance. 

Analysis of variance (ANOVA) is a model independent probabilistic sensitivity analysis 

method used for determining whether there is a statistical association between an output and one 

or more inputs (Krishnaiah, 1981).  ANOVA differs from regression analysis in that no 

assumption is needed regarding the functional form of relationships between inputs and the 

outputs.  Furthermore, categorical inputs and groups of inputs can be addressed.  

  2.6.1  Description. 

Inputs are referred to as "factors" and values of factors are referred to as factor levels in 

ANOVA.  An output is referred to as a "response variable."  Single-factor ANOVA is used to 

study the effect of one factor on the response variable.  Multifactor ANOVA deals with two or 

more factors and it is used to determine the effect of interactions between factors.  A qualitative 

factor is one where the levels differ by some qualitative attribute, such as a type of pathogen or 

geographic regions.  Quantitative factor levels are continuous quantities, such as temperature or 
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amount of pathogens.  Neter et al. (1996) and Winter et al. (1991) give detail applications and 

terminology for ANOVA. 

 

ANOVA is a nonparametric method that is used to determine if values of the output vary 

in a statistically significant manner associated with variation in values for one or more inputs.  If 

the output does not have a significant association with variation in the inputs, then the variation 

in the output is random.  The exact nature of the relationship between the inputs and the output is 

not determined by ANOVA.  Although the F-test is generally used to evaluated the significance 

of the response of the output to variation in the inputs, additional tests such as the Tukey test and 

Scheffé test can also be used, such as to evaluate the effect of different input value ranges 

(Montgomery, 1997; Hochberb and Tamhane, 1987). 

 

In ANOVA, it is assumed that the output is normally distributed.  Diagnostic checks are 

important to determine whether the assumptions of ANOVA are violated.  If any key 

assumptions are violated then there can be corrective measures to address the problem.  The F 

test is generally robust to deviations from these assumptions but substantial departures from 

normality or large differences in the variances of the output can influence statistical test results 

(Lindman, 1974).   In the case of correlated inputs, the results of the F test may not be robust.  

However, approaches such as principal component analysis to group correlated factors can be 

used to address this problem (Kim and Mueller, 1978). 

  2.6.2  Application. 

ANOVA finds broad application across various fields such as health risk assessment 

(e.g., Pet-Armacost et al., 1999; Gerken et al., 2000), material testing (e.g., Golinkin et al., 
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1997), food quality (Carlucci et al., 1999, Ashraf et al., 1999), microbiology (e.g., McElroy et 

al., 2000), and microbial risk assessment (e.g., Marks et al., 1998). 

 

As an example of multifactor ANOVA, Carlucci et al. (1999) applied ANOVA to 

evaluate the effects of factors, such as the age at slaughter, storage temperature, and the storage 

time on response variables such as odor, flavor, and texture of the lamb meat.  Each response 

variable was evaluated using a 0–100 scale for different combinations of the inputs.  The 

importance of input values was evaluated in terms of the relative magnitude of F values.  All of 

the response variables were significantly affected by the age at slaughter.  In addition, the 

response variable for texture of the meat was also influenced by an interaction term, indicating 

that the effect of storage time depends on the age at slaughter. 

  2.6.3  Advantages. 

 No assumption is needed regarding the type of underlying model and both continuous 

and discrete inputs can be analyzed using ANOVA (Montgomery, 1997).  The results of 

ANOVA can be robust to departures from key assumptions, and additional techniques can be 

employed to deal with issues such as multicollinearity. 

  2.6.4  Disadvantages. 

ANOVA can become computationally intensive if there are a large number of inputs.  If 

this becomes a problem, a suggestion by Winter et al. (1991) is to try to reduce the number of 

inputs analyzed by using some less computationally intensive method, such as nominal range 

sensitivity analysis, to screen out insensitive inputs.  If there is a significant departure of the 

response variable from the assumption of normality, then the results may not be robust 
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(Lindman, 1974).  Errors in the response variables due to measurement errors in the inputs can 

result in biased estimates of the effects of factors.  If the inputs are correlated, then the effect of 

each individual input on the response variable can be difficult to assess (Neter et al., 1996), 

unless methods such as principal component analysis are used. 

2.7  Response Surface Method (RSM). 

The Response Surface Method (RSM) can be used to represent the relation between a 

response variable (output) and one or more explanatory inputs (Myers and Montgomery, 1995; 

Neter et al., 1996; Khuri and Cornell, 1987).  The RSM can be used in a probabilistic analysis 

(Chun et al., 1996; Frey and Bharvirkar, 1998).  The RSM can identify curvatures in the 

response surface by accounting for higher order effects.  The RSM is generally complex and 

therefore, used in later stages of an investigation when a limited number of factors are under 

investigation (Neter et al., 1996).   

  2.7.1  Description. 

A Response Surface (RS) can be linear or nonlinear and is typically classified as first-

order or second-order (Myers and Montgomery, 1995).  The second-order structure is used when 

there are interactions terms between inputs.  The amount of time and effort required to develop a 

response surface is typically a function of the number of inputs included and the type of response 

surface structure required.  It is often advantageous to limit the number of inputs that are 

included in the response surface to those that are identified as most important using a screening 

sensitivity analysis method, such as nominal range sensitivity analysis.  The model must be 

exercised for various desired combinations of the selected input values in order to generate a data 

set that can be used to fit or calibrate a response surface.  Monte Carlo simulation methods are 
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typically used to generate multiple values of each model input and to calculate corresponding 

values of the model output.   

 

A typical approach to response surface development is to use a least-squares regression 

method to fit a standardized first or second order equation to the data obtained from the original 

model.  The key assumptions of least-squares regression (e.g., normality of the residuals) should 

be reasonably satisfied; otherwise, other techniques such as rank-based or nonparametric 

approaches, should be considered (Khuri and Cornell, 1987; Vidmar and McKean, 1996).  The 

precision and accuracy of the response surface can be evaluated by comparing the predictions of 

the response surface to that of the original model for the same values of the model inputs.  If the 

precision and accuracy is not satisfactory, an improved fit might be obtained by iterating on 

values of parameters for the response surface (Gardiner and Gettinby, 1998). 

 

Once a response surface has been developed, the sensitivity of the model output to one or 

more of the selected inputs can be determined by:  (1) inspection of the functional form of the 

response surface; (2) statistical analysis if regression analysis was used to develop the response 

surface; or (3) application of other sensitivity analysis methods to the response surface.  The 

response surface can be thought of as a "model of a model" with the advantage of being simpler 

and faster to execute than the original model.  Therefore, computationally intensive sensitivity 

analysis methods, such as Mutual Information Index or others, may be more readily applicable to 

the response surface than to the original model. 
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  2.7.2  Application. 

The RSM is often employed for optimization and product quality studies (Gardiner and 

Gettinby, 1998).  Moskowitz (1997) demonstrated the use of RSM to optimize properties of 

cereals to maximize consumer acceptance.  Hopperstad et al. (1999) applied RSM for reliability 

analysis of an aluminum extrusion process.  The RSM also can be used for sensitivity analysis of 

stochastic systems (Williams et al., 1999). 

 

For example, Williams et al. (1999) describe application of RSM for optimization and 

sensitivity analysis of manufacturing process of a type of integrated circuit.  The complex 

computations required for simulation of the manufacturing process previously limited the 

strategies for process optimization.  Therefore, a RS was incorporated into the simulator software 

to enable statistical optimization and to perform sensitivity analysis.  The RS included five of the 

twenty original model inputs and was second order in structure. 

 

Frey and Bharvirkar (1998) used the RSM to simplify a simulation model of a coal 

gasification system.  The RS models were developed from the data generated by probabilistic 

simulation of the gasification process.  Using regression techniques, a RS model was fitted to the 

data.  A series of equations were developed to enable prediction of 60 model outputs based upon 

combinations of 12 inputs.  These RS models were implemented with a FORTRAN-based 

capital, operating, and levelized cost model to enable simultaneous prediction of the 

performance, emissions, and cost of the complex technology of gasification using desktop 

computers. 
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  2.7.3  Advantages. 

A key advantage of the RSM approach is that a potentially computationally-intensive 

model can be reduced to a simplified form that enables much faster model run times.  Therefore, 

it will be easier to apply iterative numerical procedures to the RS, such as optimization or Monte 

Carlo simulation, compared to the original model.  Furthermore, the functional form of the RS 

model and the values of its coefficients may provide a useful indication of key sensitivities.  

Nominal range sensitivity or other methods can be applied to the RS model to elucidate 

sensitivities, with faster run times.  

  2.7.4  Disadvantages. 

In order to develop a RS, calculations with the original model are needed, which can be 

resource intensive for some models.  Because the RS is calibrated to data generated from the 

original model, the valid domain of applicability of the RS model will be limited to the range of 

values used to generate the calibration data set.  Most RS studies are based on fewer inputs than 

the original model.  Therefore, the effect of all original inputs on the sensitivities cannot be 

evaluated in RSM. 

2.8  Fourier Amplitude Sensitivity Test. 

 The Fourier Amplitude Sensitivity Test (FAST) method is a procedure that can be used 

for both uncertainty and sensitivity analysis (Cukier et al., 1973, 1975, and 1978).  The FAST 

method is used to estimate the expected value and variance of the output, and the contribution of 

individual inputs to the variance of the output (Cukier et al., 1973).  The FAST method is 

independent of any assumptions about the model structure, and works for monotonic and non-
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monotonic models (Saltelli et al., 2000).  The effect of only one input (local sensitivity) or the 

effect of all inputs varying together can be assessed by FAST.   

  2.8.1  Description. 

The main feature of the FAST method is a pattern search method that selects points in the 

input parameter space, and which is reported to be faster than the Monte Carlo method (McRae 

et al., 1982).  The classical FAST method is not efficient to use for high-order interaction terms 

(Saltelli and Bolado, 1998).  However, the extended FAST method developed by Saltelli et al. 

(1999) can address higher order interactions between the inputs.  Sobol's sensitivity method is 

similar to the FAST method and can account for interacting terms, but it is less efficient than 

extended FAST (Sobol, 1993). 

 

A transformation function is used to convert values of each model input to values along a 

search curve.  As part of the transformation, a frequency must be specified for each input.  By 

using Fourier coefficients, the variance of the output is evaluated (Cuckier et al., 1973).  The 

contribution of input xi to the total variance is calculated based on the Fourier coefficients, 

fundamental frequency ωi, and higher harmonics of the frequency as explained by Cuckier et al. 

(1975).  The ratio of the contribution of each input to the output variance and the total variance 

of the output is referred to as the first order sensitivity index and can be used to rank the inputs 

(Saltelli et al., 2000).  The first order indices correspond to the contribution of individual inputs 

and not to the contribution of interactions among inputs.  To account for the residual variance in 

the output due to higher order or interaction terms that is not explained by first order indices, the 

extended FAST method is used (Saltelli et al., 1999).  
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The model needs to be evaluated at sufficient number of points in the input parameter 

space such that numerical integration can be used to determine the Fourier coefficients (Saltelli 

et al., 2000).  The minimum sample size required to implement FAST is approximately eight to 

ten times the maximum frequency used.  In the case of discrete inputs, if a sufficiently large 

sample size is not available, then the output can have frequent discontinuities.  In such a case, the 

Fourier coefficients may not be estimated properly and hence, the reliability of the results can be 

adversely affected.  Sobol's method is capable of handling discrete inputs (Saltelli et al., 2000). 

 

McRae et al. (1982) describe mathematical basis and computer implementation of the 

FAST method.  Cukier et al. (1978) and Saltelli et al., (2000) give details of producing optimal 

frequency sets.  Different search curves and their transformation functions used in FAST are 

given by McRae et al. (1982) and Cukier et al. (1975). 

  2.8.2  Application. 

FAST has been applied in fields such as performance assessment of waste disposal 

systems (e.g., Lu and Mohanty, 2001; Helton, 1993), atmospheric modeling (e.g., Rodriguez-

Camino and Avissar, 1998; Collins and Avissar, 1994; Liu and Avissar, 1996), and ground water 

modeling (Fontaine et al., 1992). 

 

As an example, Lu and Mohanty (2001) used the FAST method for sensitivity analysis of 

a model developed for performance assessment of a proposed nuclear waste repository.  The 

model output is the amount of radiation for long time periods.  Because the number of inputs of 

the model is too large to be handled by the FAST method, less important input parameters were 

first screened out.  FAST was implemented using twenty inputs.  For a 10,000 year time period 
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of interest, the top three most important inputs identified using FAST were thermal conductivity 

of the rock material, the alluvium retardation coefficient for technetium, and the well pumping 

rate for the farming receptor group located at 20 km.  Conditional complementary cumulative 

distribution functions of the model output (Mohanty and McCartin, 1998) were used to verify the 

ranking of the influential inputs produced by the FAST method. The ranking of top three inputs 

was found to be robust but the FAST method could not consistently rank other inputs of the set. 

  2.8.3 Advantages. 

The FAST method is superior to local sensitivity analysis methods because it can 

apportion the output variance to the variance in the inputs.  It also can be used for local 

sensitivity analysis with little modification (Fontaine et al., 1992).  It is model independent and 

works for monotonic and non-monotonic models (Saltelli et al., 2000).  Furthermore, it can allow 

arbitrarily large variations in input parameters.  Therefore, the effect of extreme events can be 

analyzed (e.g., Lu and Mohanty, 2001; Helton, 1993).  The evaluation of sensitivity estimates 

can be carried out independently for each factor using just a single set of runs (Saltelli et al., 

2000).  The FAST method can be used to determine the difference in sensitivities in terms of the 

differing amount of variance in the output explained by each input and, thus, can be used to rank 

order key inputs. 

  2.8.4  Disadvantages. 

The FAST method suffers from computational complexity for a large number of inputs 

(Saltelli and Bolado, 1998).  The classical FAST method is applicable to models with no 

important or significant interactions among inputs (Saltelli and Bolado, 1998).  However, the 

extended FAST method developed by Saltelli et al., (1999) can account for high-order 
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interactions.  The reliability of the FAST method can be poor for discrete inputs (Saltelli et al., 

2000).  

2.9  Mutual Information Index. 

The objective of the Mutual Information Index (MII) sensitivity analysis method is to 

produce a measure of the information about the output that is provided by a particular input.  The 

sensitivity measure is calculated based upon conditional probabilistic analysis.  The magnitude 

of the measure can be compared for different inputs to determine which inputs provide useful 

information about the output.  MII is a computationally intensive method that takes into account 

the joint effects of variation in all inputs with respect to the output.  MII is typically used for 

models with dichotomous outputs, although it can also be used for outputs that are continuous 

(Critchfield and Willard, 1986). 

  2.9.1  Description. 

The MII method typically involves three general steps:  (1) generating an overall 

confidence measure of the output value; (2) obtaining a conditional confidence measure for a 

given value of an input; and (3) calculating sensitivity indices (Critchfield and Willard, 1986).  

The overall confidence in the output is estimated from the CDF of the output.  Confidence is the 

probability for the outcome of interest.  For example, if the dichotomous output is whether risk is 

acceptable, the confidence is the probability that the risk is less than or equal to an acceptable 

level.  Conditional confidence is estimated by holding an input constant at some value and 

varying all other inputs.  The resulting CDF of the output indicates the confidence in the output 

conditioned on a particular value of the input.  The mutual information between two random 

variables is the amount of information about a variable that is provided by the other variable 
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(Jelinek, 1970).  The MII for each input is calculated based on the distribution of the input and 

on both the overall and conditional confidence in the output.  The average mutual information 

index for an input is given by (Critchfield and Willard, 1986): 

 

Ia
XY =  Σx Σy PX PY|X logn (PY | X / PY)    ( 2-3) 

  where,  

PY|X = conditional confidence; 

PY = overall confidence; 

PX  = probability distribution for the input; and 

n = 2, to indicate binary output. 

 

Ia
XY is always positive.  If Ia

XY is large, then X provides a great deal of information about 

Y.  If X and Y are statistically independent, then IXY is zero.  The amount of information about a 

variable that is provided by the variable itself is measured in terms of the "average self 

information" (IYY) of that variable, also known as the entropy of that variable (Jelinek, 1970).  

The Average Self Information of the output Y is given as:   

IYY = ΣY PY logn (1 / PY)    ( 2-4) 

where PY is the overall confidence measure of Y.  For the purpose of sensitivity analysis, a 

normalized measure of the MII, the "natural sensitivity index," SXY is used. 

SXY = (Ia
XY / IYY) X 100 %    ( 2-5) 

 

SXY reflects the percentage of the average mutual information contribution to the model 

output Y that can be attributed to the input variable X.  The calculation of MII may require 
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simplifying approximations regarding the use of a limited number of input values to represent the 

variation in an input and estimation of probabilities of the input values.  No analytical statistical 

measure is available to determine the significance of the sensitivity indices.  Because of the 

assumptions and simplifications made in evaluating SXY, the robustness of rank ordering of key 

inputs can be difficult to evaluate.  

  2.9.2  Application. 

The MII method was devised by Critchfield and Willards (1986), who demonstrated its 

application on a decision tree model.  A dichotomous model was used to decide between two 

options to treat the disease of deep vein thrombosis (DVT):  anticoagulation and observation.  

Each of these options had a relative importance to the decision maker, and they were valued in 

terms of utility.  The difference in the utilities (∆U) between the two options was used determine 

the preferred option.  The probability of a particular value of ∆U for an option was interpreted as 

the overall confidence level for that option.  The overall confidence level for anticoagulation was 

found to be 0.92 (92%).   

 

In the conditional confidence analysis, an input of interest, such as the probability of 

pulmonary embolism (PE) given DVT, P(PE|DVT) was held constant at one value and other 

inputs were varied according to their respective distributions.  The conditional confidence on ∆U 

for anticoagulation was determined.  This process was repeated for all values of the input.  The 

results of the conditional confidence analyses were represented graphically.  The mutual 

information index and natural sensitivity index, SXY, were calculated.  SXY for the input variable, 
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P(PE|DVT) was 25.  The input variable, P(fetopathy), had a sensitivity index of 3.6.  These 

results indicated that the model output ∆U was more sensitive to P(PE|DVT) than P(fetopathy). 

  2.9.3  Advantages. 

MII includes the joint effects of all the inputs when evaluating sensitivities of an input.  

The mutual information is a more direct measure of the probabilistic relatedness of two random 

variables than other measures such as correlation coefficients (Jelinek, 1970).  For example, the 

correlation coefficient of two random variables examines the degree of linear relatedness of the 

variables.  Although two uncorrelated variables may not be independent, two variables with zero 

mutual information are statistically independent.  Therefore, the MII is a more informative 

method.  The results can be presented graphically facilitating their comprehension. 

  2.9.4  Disadvantages. 

Calculation of the MII by Monte Carlo techniques suffers from computational 

complexity, making practical application difficult (Merz et al., 1992).  Critchfield and Willard 

(1986a) have suggested an approach using symbolic algebra, which is reported to be less 

computationally intensive.  Because of the simplifying approximations that may be used in MII, 

the robustness of ranking based on the sensitivity measure can be difficult to evaluate. 

2.10  Scatter Plots. 

A scatter plot is a graphical sensitivity analysis method.  Scatter plots are used for visual 

assessment of the influence of individual inputs on an output (Cook, 1994; Galvao et al., 2001).  

A scatter plot is a method often used after a probabilistic simulation of the model.  Scatter plots 
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are also often used as a first step in other analyses such as regression analysis and response 

surface methods. 

  2.10.1  Description. 

Each realization in a probabilistic simulation, such as a Monte Carlo simulation, 

generates one pair of an input value and the corresponding output value.  These simulated pairs 

can be plotted as points on a scatter plot.  Scatter plots depict the possible dependence between 

an input and the output.  Dependence may be linear or nonlinear (Cook, 1994).  The range of 

variation of the output may be constant regardless of the specific value of the input, or it may be 

non-constant.  Scatter plots may be based upon sample values, or based upon the ranks of the 

values.  General trends that might be observed in scatter plots are described by Kazmierski 

(1995) and Bernstein et al. (1988). 

 

Because scatter plots can help in visualizing and identifying potentially complex 

dependencies between an input and an output, they can be used to guide the selection of 

appropriate sensitivity analysis methods.  For example, if the relationship is nonlinear, then a 

nonlinear regression model, or a transformation of the data, may be required. 

 

The number of data points displayed in a scatter plot needs to be selected such that there 

is enough density to be able to observe any pattern, but not so many points that the variability 

within the scatter is difficult to observe (Vose, 2000).  

 

Kleijnen and Helton (1999) describe a sensitivity analysis method based on pattern 

detection used to identify relationships between inputs and an output.  For example, pattern 
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detection methods can identify linear and monotonic relationships between inputs and an output 

as well as the effect of marginal distributions of an input and an output.  Shortencarier and 

Helton (1999) describe a pattern detection method and a related software tool. 

  2.10.2  Application. 

Scatter plots have been used as an aid to sensitivity analysis in various fields such as 

behavioral studies (e.g., Sobell, 1982; Rossier et al., 2001), environmental pollution (e.g., 

Hagent, 1992; Fujimoto, 1998), plant safety (e.g.,Helton et al., 2000), medical science (e.g., 

Bruno et al., 1994; Kogo and Ariel, 1997), veterinary science (e.g., Glaser, 1996), and others. 

 

As an example, Moskowitz (1997) used consumer-based product evaluation to identify 

optimal product formulations for a ready-to-eat cereal.  Several physical attributes of the cereal, 

such as appearance, color, flavor and quality which depend upon parameters (or inputs) such as 

the amount of sweeteners and starch, die size, roasting time, and others, impact the customer 

liking of the cereal.  Thirty-one different product mixes were prepared by using different 

combinations of eight such parameters.  Different panels of consumers and experts tested these 

mixes and used a 0 to 100 scale to rate their liking for the attributes of the products.  Scatter plots 

were used to represent the relationship between different combinations of the parameters (or 

inputs) and the overall ratings of the cereal attributes (output). 

  2.10.3  Advantages. 

Scatter plots are often recommended as a first step in sensitivity analysis of a statistical 

sample of data, whether it is an empirical sample or the result of a probabilistic simulation.  A 

key advantage of scatter plots is that they allow for the identification of potentially complex 
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dependencies.  An understanding of the nature of the dependencies between inputs and an output 

can guide the selection of other appropriate sensitivity analysis methods. 

  2.10.4  Disadvantages. 

A potential disadvantage of scatter plots is that they can be tedious to generate if one 

must evaluate a large number of inputs and outputs unless commercial software is used to 

automatically generate multiple scatter plots (SPLUS, 2000).  Although not necessarily a 

disadvantage, the interpretation of scatter plots can be qualitative and may rely on judgment.  

Whether the sensitivities of two inputs differ significantly from each other cannot always be 

judged from their scatter plots. 

 

3.0 COMPARISON OF METHODS. 

In this section, each of the ten methods are compared based upon four selected criteria:  

(1) applicability of the method; (2) computational intensiveness; (3) ease and clarity in 

representation of sensitivity; and (4) the purpose of the analysis.  A summary of the comparison 

for all ten methods is provided in Table II. 

3.1  Applicability for Different Types of Models. 

As indicated in Table II, some methods can be used only with deterministic models, 

while others require the availability of probabilistic simulation results.  Furthermore, some 

methods are predicated upon an assumption of linearity, such as NRSA.  Similarly, although AD 

can be applied at multiple points in the input variable space, at each specific point it provides a 

linear measure of sensitivity.  Some methods are model dependent, such as regression analysis 
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and response surface methods, while the other methods do not require any assumption regarding 

the functional form of the model.  The ∆LOR method and the AD method have specific 

requirements regarding the form of the model output and regarding differentiability of the model, 

respectively.  The FAST method can be challenged by the presence of discrete inputs.  

 

FSRMs are nonlinear, contain thresholds, and typically contain discrete inputs.  At the 

same time, FSRMs typically include probabilistic simulations of variability and/or uncertainty.  

These characteristics suggest potential problems in application of NRSA and AD, which are 

typically deterministic methods that assume linearity, and FAST, which may have difficulty with 

discrete inputs in some cases.  The large number of inputs to a FSRM may make break-even 

analysis impractical; however, break-even could be applied to a FSRM after a small number of 

most sensitive inputs have been identified using other methods. Methods such as ANOVA and 

MII appear to be the most theoretically attractive methods, because they are model independent 

and take into account the simultaneous interaction of all selected model inputs.  However, MII in 

particular is computationally intensive.  Thus, it may be useful to develop a simplified response 

surface based upon key inputs identified using less computationally intensive methods, and then 

apply MII to the response surface. 

 

The accuracy of a sensitivity analysis method will depend on whether all key 

assumptions of the method hold true for a particular application.  For example, if NRSA is used 

with a model that is not only nonlinear, but also non-monotonic, it may be possible to obtain the 

wrong insight.  As an illustration, suppose that the value of a model output is the same for both 

the low and high values of a given model input, but that the output has a maximum in the middle 
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of the range of values for the model input.  NRSA will not reveal any relationship in this case.  

Moreover, in the absence of any other analyses or insights by the analyst, NRSA will not by 

itself reveal its own shortcoming in this case.  In contrast, there are standard diagnostic tests that 

can be used with methods such as regression analysis and ANOVA to determine if key 

assumptions have been violated. 

3.2  Computational Issues. 

FSRMs can be large and computationally intensive.  Therefore, there are incentives to 

identify sensitivity analysis methods that do not introduce substantial additional computational 

burdens.  Some of the methods identified, including regression analysis, ANOVA, and scatter 

plots, can be applied to the results of a probabilistic analysis without need for any additional 

model runs.  This can be useful only if all candidate sensitive variables have been assigned 

distributions in the probabilistic analysis.  Moreover, computational intensity is based not just on 

exercise of the original model, but also upon any additional computations required in applying 

the sensitivity analysis method.  For example, the time to perform an ANOVA calculation will 

be sensitive to the sample size, the number of inputs, and whether there are interactions among 

the inputs.  The time required to prepare scatter plots will depend on the number of pair-wise 

combinations of inputs and outputs that are evaluated.  Commercial software are readily 

available in both of these examples, as well as for other methods such as regression analysis. 

 

NRSA is potentially an easy method to apply if a limited number of inputs are to be 

evaluated.  In a FSRM, there may be some inputs that are not treated probabilistically which 

could potentially be important in determining the model output.  NRSA is in some ways 
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preferred over AD methods, because both the sensitivity and possible range of values are taken 

into account in the former, while only local sensitivity is considered in the latter.  

 

Aside from computational intensity, another consideration is computational feasibility.  

AD methods can only be applied if the model is locally differentiable.  FAST can encounter 

difficulties with discrete model inputs.  Thus, it is possible that either of these two methods may 

be inapplicable to a particular model, unless the model or method can be revised to correct for 

these issues. 

3.3  Ease and Clarity in Representation of Sensitivity. 

Each sensitivity analysis method has its own metric for sensitivity.  There are standard 

numerical ways of representing results for NRSA, ∆LOR, AD, regression analysis, ANOVA, 

FAST, and MII.  For regression and ANOVA based methods, there are statistical measures of 

the significance of the sensitivity indicators (e.g., regression model coefficients, F-ratios) that 

can be used to help distinguish which inputs are insensitive from those that have at least some 

influence on the output.   Regression-based methods also provide information that might help 

distinguish among the statistically significant inputs.  For example, in standardized step-wise 

regression, the magnitude of the regression coefficient and the incremental improvement in the 

R2 value can be compared for different inputs to gain insight into which ones are substantially 

more sensitive than others. In some cases, a model output may have approximately equal 

sensitivity to two or more inputs.  Thus, small differences in the sensitivity indicators may be 

insignificant from a practical, if not statistical, perspective.  As a result, there may be ambiguity 
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regarding the rank order of inputs from most sensitivite to least sensitive with respect to a given 

output.  

 

For the other methods, such as break-even analysis, RSM, and scatter plots, the 

representation of sensitivity may be less prescribed and more subject to individualized 

presentation and interpretation.  In the case of RSM, the interpretation of sensitivity may be 

based upon examination of the functional form of the response surface, and the values of its 

coefficients.  If a statistical method, such as regression, was used to develop the response 

surface, then there may be statistical measures of the significance of sensitivities between the 

output and one or more inputs (including interaction terms).  The interpretation of break-even 

analysis results typically distills to whether or not a decision is sensitive to the range of 

uncertainty in one or more inputs.  Additional analysis might clarify how sensitive the decision 

may be.  For example, one could estimate the probability that a particular option is not the best 

one depending on the distribution of uncertainty assigned to one of the key decision inputs.  In 

the case of scatter plots, the interpretation will often be case-specific.  In some situations, clear 

insights may emerge that enable identification of the most important inputs.  

 

Sensitivity analysis methods can be distinguished based upon whether they are local or 

global methods, and regarding whether they focus on one input at a time or take into account 

simultaneous interactions among the inputs. A method that is global and that takes into account 

interactions among multiple inputs may provide more robust insights than methods without these 

features.  NRSA, ∆LOR, and AD are local methods and they do not account for simultaneous 

interactions among the inputs.  Break-even analysis may account for interactions among a small 
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number of inputs, conditioned on either point-estimates or distributions for all remaining inputs.  

Thus, break-even analysis is a hybrid of both local and global characteristics.  Regression, 

ANOVA, FAST, MII, RSM, and scatter plots can be applied over a potentially large domain of 

the input parameter space and can be applied taking into account simultaneous variation of 

multiple inputs.  

3.4  Purpose of the Analysis. 

Sensitivity analysis may be performed for a variety of reasons, including identification of 

key inputs and/or exploration of the model response to specific inputs.  The latter can be useful 

to either verification and/or validation of the model.   

 

All of the methods reviewed here have the potential to reveal key sensitivities as long as 

key assumptions for a given method are not grossly violated.  Some methods provide more 

information regarding the nature of the sensitivity than others.  For example, because ANOVA is 

a model-free and nonparametric approach, it only provides indication of a statistical association 

between an output and an input.  MII provides a measure of the information that an input imparts 

to the output.  FAST provides insight regarding the contribution of an input to the variance in the 

output.  None of these methods provide insight into the specific nature of the relationship.  Thus, 

these methods may be helpful in identifying key inputs, and in identifying qualitative features of 

the relationship between an input and an output, but they are less useful in terms of quantitative 

verification and/or validation of a model. 
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In contrast, a technique such as regression analysis or RSM can be used to help find a key 

functional relationship that enables quantitative estimation of how the output changes with 

respect to variation in the input.  Methods such as NRSA, ∆LOR, and AD provide insight 

regarding the local behavior of the model, and thus have the potential to be useful for both 

verification and validation.  Scatter plots may in some sense be the most revealing of possible 

problems in model performance, since no prior assumption is made regarding how the model is 

responding to a given input.   

 

Of course, with simple modifications, some methods can have increased utility as a 

means for verification or validation of model performance.  For example, a strict application of 

NRSA may not take into account nonlinearities in model response.  However, if three or more 

values of a given model input are used to predict the model output, and if all such values are 

displayed graphically, any nonlinearity in the model response can be revealed and compared with 

prior expectations or with validation data. 

 

4.0 CONCLUSIONS. 

There are a large number of sensitivity analysis methods used in a variety of disciplines.  

Only ten such methods have been identified and evaluated here.  The methods were selected 

based upon a judgment that they are widely used and of potential relevance to FSRMs.  Each 

method was characterized individually, and the methods were compared on the basis of four 

criteria.   
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There is no single method that is clearly superior to all others.  Each method has its own 

key assumptions and limitations.  Each method has its own demands regarding the time and 

effort to apply the method and interpret the results.  Each method has strengths and limitations 

regarding the type of insight that it can provide.  FSRMs have important features that, taken 

individually, favor one method over another.  However, when taken in aggregate, there is not one 

obvious best method.  For example, a model-free and global method is recommended as the most 

appropriate choice because FSRMs typically are nonlinear, contain thresholds, and include 

discrete inputs.  Thus, methods such as NRSA, ∆LOR, AD, regression analysis, and RSM may 

not be able to provide robust insights either because they assume linearity or because they 

require specification of a functional form.  FAST, in spite of its many attractive features, may be 

inapplicable because of potential problems in dealing with discrete inputs.  In contrast, methods 

such as ANOVA, MII, and scatter plots are model independent and in principle can deal with the 

key characteristics of FSRMs.  ANOVA can be applied to the results of a probabilistic analysis 

but does not by itself provide direct insight into the nature of the relationship between the output 

and the most sensitive inputs.  MII would require computationally intensive simulations which 

may be impractical unless a good response surface can be used instead of the original model.  

Scatter plots should be used to help identify relationships that may otherwise be difficult to 

characterize with other methods.  

 

An iterative approach to sensitivity analysis is likely to be needed for most FSRMs.  In 

the iterative approach, one or more methods that are not computationally intensive can be used to 

make a preliminary identification not only of the most important sensitive inputs, but also of the 

least important inputs.  Subsequently, more refined and/or computationally intensive sensitivity 



 54

analysis methods can be applied only to the subset of inputs that appear to be most important or 

that a particular method can easily address.   

 

Because each sensitivity analysis methods is typically based upon a different assumption 

regarding appropriate ways of measuring sensitivity, it is possible that two different methods 

may lead to different rank ordering of key inputs.  Thus, a general recommendation is to use two 

or more methods, preferably with dissimilar foundations, to increase confidence that the 

identification of key inputs is robust.   

 

Other important issues that must be addressed with FSRMs include modularity and 

aggregation.  FSRMs typically consistent of separate modules that represent different food 

processing steps.  Within a given part of a model, there may be aggregation (e.g., from individual 

animals to batches of ground beef).  As part of future work, methods should be identified, 

applied, and evaluated for sensitivity analysis across modules and taking into account 

aggregation. 

 

Although there are theoretical arguments in favor of some methods over others, these 

methods should be compared to evaluate whether their results differ in practice.  Thus, for future 

work, a quantitative comparison of multiple sensitivity analysis methods applied to the same 

specific refined FSRMs is recommended.  Such a comparison can provide insight regarding 

whether the methods, in spite of different theoretical foundations, perform similarly in practice. 
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Figure 1.  Example of chart for representing difference in log odds ratio. 

(Source:  Stiber et al., 1999) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.   Example of break-even analysis. 
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Table I.  Forward stepwise regression analysis for mean population dose. 

(Source:  Helton et al., 1995) 

Steps Inputs Standardized Regression Coefficients R2 

1 PSMCS134 0.62 0.40 

2 TFMCS 0.27 0.78 

3 PSMI131 0.32 0.86 

4 PSMCS137 0.19 0.89 

5 TFMI131 0.13 0.90 

6 IF1 0.11 0.92 

7 AF - 0.10 0.92 

8 TFMSR 0.09 0.93 

9 FRCTCMP 0.09 0.94 

10 PSMSR90 0.09 0.94 
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  Table II.   Overview of Comparison of the Methods 

Methods Applicability Computational Issues Representation of Sensitivity Best Use of Methods 
Nominal 
Range 
Sensitivity 
Analysis 

Deterministic 
model. 

Need nominal range for each input, 
potentially time consuming. 

Ratios, percentages.  Does not include 
effect of interactions or correlated 
inputs.  Easy to understand. 

Key inputs for linear 
models, verification 
and validation. 

∆∆LOR Deterministic 
model with output 
as a probability. 

Need nominal range for each input, 
potentially time consuming. 

Ratios, percentages.  Does not include 
effect of interactions or correlated 
inputs.  Easy to understand. 

Key inputs for linear 
models, verification 
and validation. 

Breakeven 
Analysis 

Models used to 
choose among 
alternatives. 

Complex for model with many decision 
options and/or more than two inputs, 
potentially time consuming. 

Graphical representation. Robustness of 
solution. 

AD Locally different- 
tiable models. 

Require specific software (e.g., 
ADIFOR) 

Local sensitivity measures, such as 
sensitivity coefficients 

Potential key inputs, 
verification. 

Regression To results from 
probabilistic 
simulation 

Must specify functional form, 
computation time and value of solution 
depends on specific techniques used.  

R2, t-ratios for regression coefficients, 
standard regression coefficients, and 
others. 

key inputs, joint 
effect of multiple 
inputs, verification. 

ANOVA 
(MF)a 

Probabilistic 
models 

Time consuming for a large number of 
inputs with interactions. 

F-value, Tukey test coefficients, and 
other that are calculated at different 
stages of ANOVA. 

key inputs, joint 
effect of multiple 
inputs, verification. 

RSM Any deterministic 
model 

Developed using a variety of techniques, 
some require functional forms, others do 
not; may require extensive runs to 
generate a calibration data set. 

Graphical, evaluation of functional 
form, method-dependent measures. 
 

Model of models, 
used with other SA 
methods to save time. 

FAST 
(MF) 

Probabilistic 
models 

Better with no interactions/higher order 
input. Caution against discrete inputs. 

Portion of output variance attributable 
to each input 

Key inputs including 
combined effect, 
verification.  

MII 
(MF) 

Probabilistic 
model. 

Complex, no computer code available, 
Time consuming. 

Amount of "mutual information" about 
the output provided my each input, also 
graphs of intermediate stages. 

Key inputs including 
combined effect. 

Scatter 
Plots 
(MF) 

Probabilistic 
model. 

Easy, time requirement depends on the 
number of input/outputs. 

Graphical, no quantitative sensitivity. Verification and 
validation. 

a  MF = denotes a model-independent approach 


