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ABSTRACT

With the availability of hindcasts or real-time forecasts from a number of coupled climate models, multi-

model ensemble forecasting systems have gained popularity in recent years. However, many models share

similar physics or modeling processes, which may lead to similar (or strongly correlated) forecasts. Assigning

equal weights to each model in space and time may result in a biased forecast with narrower confidence limits

than is appropriate. Although methods for combining forecasts that take into consideration differences in

model accuracy over space and time exist, they suffer from a lack of consideration of the intermodel de-

pendence thatmay exist. This study proposes an approach that considers the dependence amongmodels while

combining multimodel ensemble forecast. The approach is evaluated by combining sea surface temperature

(SST) forecasts from five climate models for the period 1960–2005. The variable of interest, the monthly

global sea surface temperature anomalies (SSTA) at a 58 3 58 latitude–longitude grid, is predicted three

months in advance using the proposed algorithm. Results indicate that the proposed approach offers con-

sistent and significant improvements for all the seasons over the majority of grid points compared to the case

in which the dependence among the models is ignored. Consequently, the proposed approach of combining

multiple models, taking into account the interdependence that exists, provides an attractive strategy to de-

velop improved SST forecasts.

1. Introduction

Skilful climate predictions provide useful scientific

information to planners and operational agencies to

plan and develop contingency measures and strategies

to deal with the adverse conditions. In this regard, sea-

sonal to interannual (long lead) climate forecasts are

issued on a regular basis by various national and inter-

national agencies using both coupled ocean–atmosphere

general circulation models (CGCMs) (Saha et al. 2006;

Weisheimer et al. 2009; Palmer et al. 2004) and atmo-

spheric general circulation models (AGCMs) (Devineni

and Sankarasubramanian 2010a,b). Multiple sources of

uncertainties including parameterization, process rep-

resentation, and initial conditions control the develop-

ment of seasonal to interannual climate forecasts. Efforts

in reducing the errors and uncertainties in climate

forecasts are focused on improving the representation of

processes in individual CGCMs and AGCMs as well as

by combining multiple models (Hagedorn et al. 2005).

The use of a single best model often leads to poorer

predictive performance as a result of the greater pa-

rameter and structural uncertainties in the model design

(Chowdhury and Sharma 2011). Moreover, identifying

a best or a poorest model from a set of models is not

usually possible because of their individual strengths,

preference in application, and varying skill depending

on the variable of interest, location, season, forecast lead

time, and so on (Hagedorn et al. 2005).

Developing multimodel forecasts has been pursued

using various techniques ranging from simple pooling of

the ensembles to optimizing weights to maximize the

skill of multimodel forecasts (Rajagopalan et al. 2002;

Robertson et al. 2004) or statistically estimating theweights

conditioned on the dominant predictor conditions

(Devineni and Sankarasubramanian 2010a). In addition,

various statistical techniques such as simple regression
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(Krishnamurti et al. 1999), dynamic pairwise weighting

based on logistic regression (Chowdhury and Sharma

2011), objective Bayesian analysis (Delsole 2007), and

advanced statistical techniques such as the canonical

variate method (Mason and Mimmack 2002) also have

been applied. Simple multimodel ensembles (MMEs)

are performed by combining the individual ensemble

forecasts with equal weights (Hagedorn et al. 2005).

However, these approaches do not consider any tem-

poral variations of the component model skill. In more

refined approaches, the participating single-model en-

sembles (SMEs) are weighted according to their prior

performance (Rajagopalan et al. 2002). Here informa-

tion is taken from all participating single models, in-

cluding the less skilful one and the climatology. While

linear combinations of multimodel responses are used in

order to reduce the predictive uncertainty of climatic

and hydrological variables, recent studies have focused

on the technique of model combination weight wherein

individual model weights are allowed to change with time,

called a dynamic combination model (Chowdhury and

Sharma 2009a,b, 2011; Devineni and Sankarasubramanian

2010a,b). It may be noted that the predictions from static

combination of multiple models improve the skill com-

pared to any single model prediction (Chowdhury and

Sharma 2009a). The dynamic combination approach

outperforms the static model combination approach in

predicting SST and in long-range Ni~no-3.4 predictions

(Chowdhury and Sharma 2009a, 2011).

Recently,Wasko et al. (2013) presented a copula-based

approach for combining model rainfall predictions in

a spatial context. All the above discussed techniques do

not consider the spatiotemporal dependencies among

the model skill. For instance, if a model performs well

over a given region (e.g., tropical Pacific), then higher

weights should be given for that model as opposed to

another model that does not perform well in that region.

Here we propose an approach to combine seasonal

SST forecasts from multiple GCMs and provide an

ensemble SST forecast for the entire globe taking into

account the dependence among model forecasts,

which varies with time. The proposed approach is an

improvement over the multimodel combination meth-

odology of Devineni and Sankarasubramanian (2010a)

and Chowdhury and Sharma (2009a, 2011). The perfor-

mance of the proposed approach is compared and eval-

uated against the case in which the dependence among

the models is ignored.

2. Data description

Monthly SST forecasts from five available CGCMs of

the Ensemble-Based Predictions of Climate Changes

and Their Impacts (ENSEMBLES) project (Weisheimer

et al. 2009) are used to develop the multimodel forecasts

for SST for four seasons [February–April (FMA), May–

July (MJJ), August–October (ASO), and November–

January (NDJ)] over the entire globe. These include the

models produced by European Centre for Medium-

Range Weather Forecasts (ECMWF), the Centro Euro-

Mediterraneo sui Cambiamenti Climatici (CMCC), the

Leibniz Institute of Marine Sciences (IFM-GEOMAR),

M�et�eo-France, and the Met Office (UKMO). The data

are obtained from the data library of the International

Research Institute for Climate and Society (IRI), New

York. These retrospective forecasts were issued on the

first of February, May, August, and November based on

the updated respective initial conditions and these

forecasts extend up to seven months lead time except

for November, during which the interest is in evaluating

the skill in predicting ENSO conditions up to fourteen

months. All the models have nine ensemble members

and span over 46 years (1960–2005). The data are avail-

able at 2.58 3 2.58 spatial resolution and are interpolated

onto the 58 3 58 grid to match the Kaplan observed

monthly SST data (obtained from the IRI data library)

(Kaplan et al. 1998; Reynolds and Smith 1994) for direct

comparison.

3. Methodology

As our aim is to develop seasonal forecasts, monthly

SSTs are converted to seasonal SSTs. The individual

model’s systematic bias is removed by deducting the

long-term average of the seasonal SST from individual

values. Therefore, each model ensemble is represented

as anomaly from the model’s seasonal climatology. A

nonparametric nearest neighbor approach is employed

to identifyK similar conditions to the observed monthly

SST anomaly (SSTA) in October, January, April, and

July (in the beginning of the seasonal forecast) for each

year. Computed over K neighbors, the covariance ma-

trix (discussed in detail in the next section) of the fore-

cast is calculated every year, separately for each season,

in order to ascertain the optimal weighting for each

model. It is important to note that in Devineni and

Sankarasubramanian (2010a) the weights for each

month/season are estimated based on the mean

squared deviation of each CGCM from the observa-

tion over K neighbors, whereas in our approach these

are derived from a covariance matrix that accounts

for the dependence among forecasts. As the covariance

matrix changes with seasons and years, the model

weights, derived from the covariance matrix, also

change with time. More details on the algorithm are

presented next.
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a. Multimodel algorithm

Multimodel combinations of seasonal SSTA forecasts

for the seasons NDJ, FMA, MJJ, and ASO for all grid

points over the entire globe are developed following the

procedure outlined below.

1) Read the SSTA data for the observed and model

forecasts for a particular season (i.e., NDJ) over all

global SST grid cells.

2) At each grid point, calculate the seasonal forecast

errors of the five models over the period by subtract-

ing the ensemble mean of the model forecast from

the observed seasonal SSTA.

3) Let the observed SSTA of October 1960 (month

before a particular season) be z. Search forK similar

observations to z in the Octobers of the entire ob-

served period (1961–2005; i.e., 45 yr, excluding the

year under consideration) having minimum absolute

difference (or Euclidean distance) between z and the

observed monthly (October) SSTA of other years

represented by x, according to the following:

di 5 jxi 2 zj , (1)

where the subscript i varies from 1 to 45. Also note

down the corresponding seasonal forecast error. The

distances di along with forecast error are sorted in

ascending order and only the firstK seasonal forecast

errors are retained. Lall and Sharma (1996) pro-

posed optimum value of K, K5
ffiffiffi
n

p
for a sample of

size n.

4) From the forecast errors of the five models over the

K neighbors, estimate the variance-covariance ma-

trix for every year. Sincewe have fivemodels, the size

of the variance-covariance matrix is 5 3 5 with the

diagonals representing the variance of the errors

over the K neighbors.

5) Calculate weight associated with each model using

the variance-covariance matrix [and Eq. (10)]. Com-

pute multimodel forecast using weights and model

forecasts.

6) Move on to the next grid point and go to step 2.

7) Move on to the next season and go to step 1.

b. Weight estimation using covariance matrix

At time t, the seasonal SSTA forecasts is expressed as

Yt1h; here h is referred to as the forecast horizon. Let

ŷct1h,t be the combined point forecast as a function

of underlying forecasts Ŷt1h,t 5 (ŷ1,t1h,t, ŷ2,t1h,t, . . . ,

ŷM,t1h,t)
0, with M denoting the number of models. It is

considered that the loss function only depends on the

forecast error et1h,t 5 yt1h 2 ŷct1h,t. If the weights of

models are wt,h 5 (w1,t1h,t, . . . , wM,t1h,t)
0, then a com-

bined forecast ŷct1h,t can be expressed as

Ŷ
c

t1h,t 5w0Ŷt1h,t . (2)

Timmermann (2006) suggests minimizing the mean

squared error (MSE) loss by considering only the first

two moments of the joint distribution of Y and Ŷ:

 
Yt1h

Ŷt1h,t

!
;

�
myth

mŷth

� 
s2
yth s 0

yŷth

syŷth Sŷŷth

!
. (3)

Here s2 is the variance of forecast error. We define

the forecast errors associated with the M forecasts as

e5 iY2 Ŷ, where i is an M 3 1 column vector of ones.

Here the time subscript is dropped in order to avoid

confusion. From Eq. (3) the covariance matrix of the

forecast errors Se 5 E[ee0] is given by Timmermann

(2006):

Se 5E[Y2ii01 ŶŶ 02 2ŶiŶ 0]

5 (s2
y1m2

y)ii
0 1mm0 1SŶŶ

2 is0
YŶ

2sYŶ i
0 2myim

0 2mymi
0 . (4)

For our analysis Se has been estimated from the forecast

errors of the models over the K nearest neighbors. Note

that Se can be quite unstable unless large datasets are

available for estimation; also, the problem is particularly

pronounced when the pairwise correlations are high

(Clemen and Winkler 1986). To have unbiased com-

bined forecasts, we consider minimizing the expected

forecast error variance such that the individual model

weights add up to one (Timmermann 2006):

min(w0Sew) such that w0i5 1 (5)

provided that m 5 myi so that

m2
ym

01mm02 2myim
0 5 0. (6)

We introduce a new variable called the Lagrange mul-

tiplier l and the Lagrange function z is defined by

z5w0Sew2 l(w0i2 1). (7)

Deriving the first-order necessary conditions by taking

the partial derivatives for Eq. (7) and setting them equal

to zero, we can get

Sew5
l

2
i . (8)
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Assuming that Se is invertible, after premultiplying by

S21
e i0 and recalling that i0w 5 1,

l

2
5 (i0S21

e i)21 . (9)

Replacing the value of l/2 in Eq. (8), the optimal weight

w becomes

w5 (i0S21
e i)21S21

e i . (10)

The form of quadratic equations is solved using the

quadprog package in R (see http://www.r-project.org/)

in order to find the optimal weight for each model by

considering the error covariance over K neighbors. It

may be noted that in order to avoid the possibility of

a negative weight being assigned to a model, we also

imposed the condition thatwi$ 0, wherewi (i5 1, 2, 3, 4,

and 5) represents the weight of each model. Once model

weights are estimated over each grid point, the multi-

model forecast for each season is calculated using Eq. (2)

and then the MSE for each grid point over the 46 years

is calculated.

It was observed that the covariance matrix estimated

using the K nearest neighbors of 46 years of available

data (45 data points for each season) was unstable on

a few occasions. Hence, following the regionalization

approach used in the statistical literature (Lowry and

Glahn 1976) and the argument discussed in Hamill

(2012), the data for a particular grid point were aug-

mented by pooling the information from other nearby

grid points that had relatively similar climatology. A

sensitivity analysis was carried out by varying the num-

ber of nearby grid points and nearest neighbors. We

considered 8, 24, 48, 80, and so on grid points p around

the target grid cell and noted the percentage improve-

ment in MSE (averaged over all the grid points) by the

proposed multimodel versus the number of nearest

neighbors K as shown in Fig. 1. The plots suggest that

considering 8 nearby grid points offers the maximum

improvement and, on average, 100 or more data points

are needed to get a stable estimate of covariance matrix.

Figure 2 shows the optimum K value for the both mul-

timodels in four different seasons with 8 nearby grid

points. The figure suggests that as few as 40 data points

are needed to estimate the covariance matrix if corre-

lations among the models are ignored, whereas it re-

quires roughly 3 times more data points if they are

considered. The suggested K value is found to be ap-

proximately 8 times more than the value proposed in

Lall and Sharma (1996).

4. Results and discussion

Seasonal SST forecasts of the five models combined

by the proposed multimodel combination approach

described in section 3 are compared against the case in

which dependence across the models is ignored (base

model). Multimodel forecasts from both approaches are

evaluated at each grid point over the entire globe for the

four seasons (NDJ, FMA, MJJ, and ASO) during the

FIG. 1. Percentage reduction in MSE by the proposed multimodel averaged over all grid

points vs number of nearest neighborsK considering different numbers of grid points p around

a particular grid cell.

3508 JOURNAL OF CL IMATE VOLUME 27

http://www.r-project.org/


period 1960–2005. The results presented next are ob-

tained in a leave-one-out cross-validation setting. A

separate analysis was conducted to see if lead-1 auto-

correlations were significant and we found them to be

quite small (around 0.2–0.3) for most of the grid points.

A comparison ofMSE betweenmultimodel forecast and

climatology is used as ameasure of relative skill between

the two approaches. The detailed analysis is discussed

next.

a. MSE

This study uses MSE as a relative measure of skill

between the two multimodels. Figure 3 illustrates the

improvement and nonimprovement in multimodel SST

FIG. 2. Optimum K from 414-yr sample time series (46 yr 3 9) in order to estimate variance-covariance matrix for

different seasons.

FIG. 3. Spatial distribution of the improvement or nonimprovement (difference in MSE) by

the proposed multimodel in seasonal global SST forecast for the four seasons. Each 2 3 2

square represents a grid point in which each quadrant indicates a season. The top-left quadrant

denotes NDJ, top-right quadrant denotes FMA, bottom-left quadrant denotes MJJ and bottom-

right quadrant denotes ASO. Gray- and black-shaded boxes symbolize improvement and non-

improvement by the proposed multimodel, respectively.
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forecast expressed in terms of the difference in MSE

across the time period (1960–2005) between the pro-

posed approach and the base model for the four differ-

ent seasons. In this figure, each grid cell is showing

improvement or nonimprovement by appearing gray or

black for every season. The plot shows that 78%–81%of

grid cells around the entire globe exhibit significant

improvement in terms of reduction of averaged MSE

over time period (1960–2005) (Table 1). Maximum im-

provement is found in NDJ. On the other hand, Table 1

shows that MSE by the proposed multimodel averaged

over all the grid points is the least for the season ASO.

Moreover, Fig. 4 demonstrates the percentage improve-

ment in terms of reduction of averaged MSE over the

time period (1960–2005) by the proposed multimodel

for the four different seasons. It may be noted that the

forecasts have been bias corrected by centering them

around their mean values. An alternate strategy could

be to correct for the biases in the first-order as well as

second-order moments. This issue was investigated and

the results were found to be largely consistent with those

reported here. However, as can be seen, the amount of

improvement over grid cells varies from season to sea-

son. It would be useful to evaluate the performance of

the proposed multimodel over different regions, such as

Ni~no-3.4, the Indian Ocean dipole (IOD)–Indian Ocean

west pole index (WPI) and Indian Ocean north pole

index (NPI), the Indonesian index (II), the Tasman Sea

index (TSI), the South Atlantic ocean dipole (SAOD)

[northeast pole (NEP) and southwest pole (SWP)], and

the Atlantic multidecadal oscillation (AMO) region

(Table 2). Over the IOD–WPI region (108N–108S, 508–
708E; Wajsowicz 2007), improvement is prevalent for all

the seasons in the most of the grid cells. On the other

hand, for the IOD–EPI region (08–108S, 908–1108E;
Wajsowicz 2007), substantial development over the

number of grid cells can be identified for ASO and NDJ

only; however, the percentage of MSE is increased in

ASO. In case of the Ni~no-3.4 region (58N–58S, 1708–
1208W; Wang et al. 2012), our model showed significant

improvement for the seasons FMA, MJJ, and ASO, but

not for NDJ. It appears that over this region all models

perform equally well and therefore model weighting

does not show significant improvements. Similarly, in

TABLE 1. Percentage improvement in the number of grid points by the proposed multimodel approach.

Season

Improvement by the

proposed multimodel

Avg MSE for the multimodel

considering correlation

Avg MSE for the multimodel

ignoring correlation

NDJ 81% 0.220 0.240

FMA 79% 0.245 0.267

MJJ 78% 0.193 0.204

ASO 78% 0.168 0.179

FIG. 4. Gradient maps showing the percentage of improvement by the proposed multimodel in respect to the multimodel where correlation

is ignored in the seasonal global SST forecast for the four different seasons indicated at the top of the map.
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case of TSI (308–408S, 1508–1608E; Wang et al. 2012),

achievement is almost similar throughout the year. The

II region (08–108S, 1208–1308E; Wang et al. 2012) shows

improvement in all the seasons over all the grid points.

The multimodel performed consistently better over

the AMO region (08–608S, 808W–08; Gray et al. 2004)

throughout all the four seasons. For the NEP of the

SAOD region (08–158S, 108–208E; (Nnamchi et al. 2011),

less improvement could be achieved in NDJ in contrast

to the other three seasons. However, all the grid cells in

the SWP of the SAOD (258–408S, 108–408W; Nnamchi

et al. 2011) exhibit improvement in NDJ.

b. Correlation among the models

The use of model combinations for formulating im-

proved climate forecasts has recently been extended

for seasonal hydrologic predictions, with applications

showing a range of situations where the advantages can

be significant (Chowdhury and Sharma 2009b, 2011;

Devineni and Sankarasubramanian 2010a; Robertson

and Wang 2012; Wang et al. 2012). Here we further

extend this multimodel combination approach to the

cases when intermodel correlations are significant and

illustrate the improvements that can be achieved if

procedures for factoring in this dependence are utilized.

Table 3 presents the pairwise spatial and temporal mean

correlation averaged over all grid points for the five

participating GCMs, those of the ECMWF, CMCC,

IFM-GEOMAR, M�et�eo-France, and the UKMO. The

lower triangle of the topmatrix, the upper triangle of the

top matrix, the lower triangle of the bottom matrix, and

the upper triangle of the bottom matrix indicate the

correlations for the NDJ, FMA, MJJ, and ASO seasons,

respectively. Correlation between models varies from

0.11 to 0.25 and is higher for NDJ and FMA seasons in

comparison to the other two seasons.

c. Weights for the models

The weight associated with a model explains the con-

tribution of that model in forecasting SSTA. As these

TABLE 2. The performance evaluation of the proposed multimodel over different regions.

Percentage of improved grid cells Percentage reduction in MSE

Region NDJ FMA MJJ ASO NDJ FMA MJJ ASO

IOD–WPI 94 94 94 81 6.5 5.9 5.2 1.9

IOD–EPI 67 33 50 83 4.3 1.1 2.9 21.7

TSI 75 75 75 75 2.7 5.1 2.9 7.7

II 100 100 100 100 4.1 4.3 7.2 9.7

Ni~no-3.4 60 70 70 70 21.6 6.7 4.7 8.0

AMO 71 75 81 71 4.3 3.2 4.7 5.6

SAOD–NEP 75 100 83 92 1.1 3.7 5.3 4.6

SAOD–SWP 100 83 67 94 10.0 6.4 4.3 7.7

TABLE 3. Spatial and temporal mean correlation over all the grid points for the five participating GCMs—ECMWF, CMCC, IFM-

GEOMAR, M�et�eo-France, and the UKMO. The lower triangular matrix of the top-half of the table, the upper triangular matrix of the

top-half of the table, the lower triangular matrix of the bottom-half of the table, and the upper triangular matrix of the bottom-half of the

table represent the correlations among the CGCMs for the seasons NDJ, FMA, MJJ, and ASO, respectively.

ECMWF CMCC IFM-GEOMAR M�et�eo-France UKMO

FMA

ECMWF NDJ 1.00 0.18 0.13 0.21 0.19 FMA

CMCC 0.17 1.00 0.15 0.24 0.21

IFM-GEOMAR 0.14 0.17 1.00 0.14 0.13

M�et�eo-France 0.18 0.23 0.15 1.00 0.25

UKMO 0.17 0.22 0.14 0.22 1.00

NDJ

ASO

ECMWF MJJ 1.00 0.14 0.12 0.14 0.13 ASO

CMCC 0.15 1.00 0.12 0.15 0.13

IFM-GEOMAR 0.13 0.14 1.00 0.12 0.11

M�et�eo-France 0.16 0.17 0.13 1.00 0.14

UKMO 0.15 0.15 0.12 0.17 1.00

MJJ
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weights vary with time and space, their analysis and

presentation is not straightforward. Figure 5 describes

the correlation-based weighing scheme in the multi-

model combination. In this illustration, two models are

considered for multimodel combination. The variance

of one model (Mc
y) is kept constant (51) and the vari-

ance of another model (My
y) is varied from 0.1 to 3.0.

This example indicates how the weight for the model

with less variance (or the best model) increases as the

correlation increases. While it is not straightforward to

ascertain how this result will extend for more than two

models, once can note the stability and added accuracy

that is introduced by considering correlations, in con-

trast to the case where it is not taken into account

(equivalent to the model weight for a correlation equal

to zero in the figure).

Table 4 presents spatially and temporally averaged

contribution of each model both for the proposed mul-

timodel and the base multimodel in four different sea-

sons. Considering the correlations among the models,

ECMWF and UKMO are assigned higher weights, and

CMCC and M�et�eo-France are added as lower weights

for the NDJ and FMA seasons. On the other hand, the

IFM-GEOMAR and UKMOmodels contributed higher

weights for the MJJ and ASO seasons. Interestingly, it

can be observed formTable 5 that for all the four seasons,

the models ECMWF and UKMO have the least error

variances and these two models consistently get higher

weights than the rest of the models if the correlations

among the models are ignored. When considering cor-

relations, for example, during the season NDJ, the cor-

relation contributed higher weight to UKMO at the

expense of CMCC and M�et�eo-France (Table 3). It can

also be noted that the UKMOmodel performs better in

both the multimodel combinations for all the four sea-

sons. Figure 6 shows the year-to-year distribution of

model weights over the two randomly picked grid points

for both cases (for NDJ). These grid points are picked up

from each of the regions (e.g., Ni~no-3.4 and AMO).

FIG. 5. Illustration of correlation-based weighing scheme in multimodel combination. The variance of one model (Mc
y) is constant (51)

and the variance of another model (My
y) varies from 0.1 to 3.0.

TABLE 4. Weight in percentage of each CGCM for the multi-

models averaged spatially and temporally in the four different

seasons.

Season ECMWF CMCC IFM-GEOMAR

M�et�eo-

France UKMO

Multimodel considering correlation

NDJ 26 10 24 9 31

FMA 27 8 21 10 33

MJJ 20 8 26 11 35

ASO 17 10 25 13 35

Multimodel ignoring correlation

NDJ 24 16 18 19 23

FMA 24 16 18 19 23

MJJ 22 17 19 19 23

ASO 21 17 19 20 23
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These plots confirm that the weights of the models for

the both cases are time-space variant; however, this

variation is significant in case of our proposed approach.

It is also noteworthy that if correlations among the

models are ignored, all of the participating CGCMs

contribute in the combined forecast whereas the multi-

model having correlation does not necessarily require

the contribution of all the participating models. Finally,

the contour plots of weights averaged over the entire

time period across the globe for a season (e.g., NDJ) are

shown in Fig. 7. This conveys that ECMWF is getting

higher weight around the equator in the Pacific Ocean,

the entire North American coasts of the North Atlantic

Ocean, and the northern South American coasts of the

South Atlantic Ocean. The UKMO model outperforms

around the midlatitudes in the North and South Pacific

Ocean, the midlatitudes in the Indian Ocean, and the

midlatitudes in the North and South Atlantic Ocean. On

the other hand, CMCC and M�et�eo-France are contrib-

uting little.

5. Conclusions

Recent dynamic multimodel combination–based

studies have the limitation of ignoring the correlations

among the participating models. This study dynamically

combined 3-month-ahead globally gridded sea surface

temperature anomaly forecasts based on the degree of

correlation between forecasts errors and the relative size

of the individual models’ forecast error variances. Five

available CGCMs of the ENSEMBLES project are

used to develop the multimodel forecast of the seasonal

SSTA for the four seasons. Based on the observed

monthly SSTA in October, January, April, and July

computed over proposed K neighbors, the covariance

matrix of the forecast errors is calculated in order to

provide the weighting to each model every year. The

proposed multimodel combination approach shows sig-

nificant improvement in SSTA forecasts at a majority of

the grid points regardless of seasons over the contem-

porary multimodel combination approach wherein

correlations are ignored. The correlations among the

models, and hence the model weights, vary from season

TABLE 5. Spatial and temporal mean error variance for each

model.

Season

Model NDJ FMA MJJ ASO

ECMWF 0.23 0.24 0.21 0.20

CMCC 0.51 0.57 0.29 0.24

IFM-GEOMAR 0.35 0.37 0.24 0.21

M�et�eo-France 0.35 0.41 0.24 0.20

UKMO 0.30 0.34 0.20 0.17

FIG. 6. The weights for the five GCMs at two selected grid cells for the both multimodel combination approaches

(season: NDJ): (top) grid cell at 2.58N, 142.58W and (bottom) 32.58N, 32.58W.
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to season and from one location to another. In both

multimodel approaches, the UKMOCGCM consistently

contributes higher weights for all the four seasons.
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