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[1] A new approach to combine precipitation forecasts from
multiple models is evaluated by analyzing the skill of the
candidate models contingent on the forecasted predictor(s)
state. Using five leading coupled GCMs (CGCMs) from the
ENSEMBLES project, we develop multimodel precipitation
forecasts over the continental United States (U.S) by
considering the forecasted Nino3.4 from each CGCM as the
conditioning variable. The performance of multimodel
forecasts is compared with individual models based on rank
probability skill score and reliability diagram. The study
clearly shows that multimodel forecasts perform better
than individual models and among all multimodels,
multimodel combination conditional on Nino3.4 perform
better with more grid points having the highest rank
probability skill score. The proposed algorithm also
depends on the number of years of forecasts available for
calibration. The main advantage in using this algorithm
for multimodel combination is that it assigns higher
weights for climatology and lower weights for CGCM if
the skill of a CGCM is poor under ENSO conditions.
Thus, combining multiple models based on their skill in
predicting under a given predictor state(s) provides an
attractive strategy to develop improved climate forecasts.
Citation: Devineni, N., and A. Sankarasubramanian (2010),
Improved categorical winter precipitation forecasts through multi-
model combinations of coupled GCMs, Geophys. Res. Lett., 37,
L24704, doi:10.1029/2010GL044989.

1. Introduction

[2] Seasonal to interannual climate forecasts are regularly
issued these days by various national and international
agencies using both coupled ocean‐atmosphere general
circulation models (CGCMs) [Palmer et al., 2004] and
atmospheric general circulation models (AGCMs) [Goddard
et al., 2003]. Efforts in reducing the errors in climate fore-
casts have focused on improving the process representation
in individual CGCMs/AGCMs as well as by combining
multiple models that typically results in error cancellation
[Hagedorn et al., 2005]. Recently, using synthetic forecasts,
Weigel et al. [2008] demonstrated that multimodel fore-
casts would always result with improved prediction pro-
vided individual models’ forecasts are overconfident (i.e.,
ensembles are under‐dispersed). Studies from DEMETER

projects show that multimodel combination of CGCMs im-
proves the reliability and skill in predicting summer precip-
itation in the tropics and winter precipitation in the northern
extratropics [Palmer et al., 2004]. Developing multimodel
forecasts have been pursued using various techniques that
includes simple pooling of the ensembles [Doblas‐Reyes
et al., 2000] or optimizing weights to maximize the likeli-
hood of the multimodel forecasts [Rajagopalan et al., 2002].
Other methods include various statistical techniques ranging
from simple regression [Krishnamurti et al., 1999], dynamic
pairwise weighting based on logistic regression [Chowdhury
and Sharma, 2009], objective Bayesian analysis and multi-
variate methods.
[3] Recently, Devineni and Sankarasubramanian [2010,

hereafter DS10] proposed and evaluated a methodology to
combine multiple AGCMs based on their ability to predict
under relevant predictor conditions. The motivation behind
this combination scheme is to assign higher (lower) weights
if a candidate model has good (poor) skill under well‐known
predictor (e.g., El‐Nino Southern Oscillation (ENSO))
conditions that influences the seasonal climate of the region.
DS10 demonstrated the utility of the methodology in
improving the prediction of winter precipitation and tem-
perature over the U.S conditioned on Nino3.4 state (com-
mon index to denote the ENSO conditions). DS10 clearly
showed that the weights obtained conditioned on Nino3.4
state were higher for AGCMs that performed well under
non‐neutral ENSO conditions and weights for climatology
(considered as one of the candidate models) were higher
since most of the models did not have significant skill under
neutral ENSO conditions. The multimodel predictions from
DS10 showed improved skill particularly for regions whose
winter precipitation and temperature exhibit significant
correlation with Nino3.4. However, for this study, DS10
used AGCMs forced with observed SSTs, which typically
overestimate the predictive skill of individual models in
comparison to the actual forecast skill that could be obtained
from CGCMs or from AGCMs being forced with forecasted
SSTs. Thus, application of DS10 methodology to retro-
spective precipitation forecasts would lead to a more
objective evaluation of the performance of CGCMs under
forecasted Nino3.4 conditions.
[4] The main goal of this study is to improve the skill of

winter (November–February, NDJF) precipitation forecasts
over the U.S by combining retrospective forecasts available
from multiple CGCMs available from the ENSEMBLES
Project [Weisheimer et al., 2009]. We combine precipitation
forecasts from multiple CGCMs by evaluating their skill
conditioned on the forecasted Nino3.4 state of each model
using the multimodel combination algorithm described in
DS10. The performance of the multimodel winter precipi-
tation forecasts is compared with the performance of indi-
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vidual models’ as well as with the commonly employed
techniques for multimodel combination.

2. Data Description

[5] Retrospective precipitation forecasts from the Euro-
pean Union’s ENSEMBLES project are used to develop the
multimodel forecasts for winter season over the U.S. The
ENSEMBLES data is obtained from the public data dis-
semination system in KNMI Climate Explorer. Forecasts are
issued on 1st February, 1st May, 1st August and 1st
November and extend up to seven months lead from their
respective start times for each year. All the models are re-
presented by nine ensemble members and available for the
period of 46 years, 1960–2005. We consider CGCMs’ SST
forecasts and precipitation forecasts issued on 1st November
with a lead time of four months for our analysis. Totally,
200 grid points of forecasts over 123.75W–66.25W and
25N–47.5N are selected from each model across the U.S.
[6] Since it is well known that the skill of winter climate

forecasts over the U.S primarily depends on the anomalous
conditions (El Nino/La Nina) in the tropical Pacific [Quan
et al., 2006], we consider Nino3.4 as the primary predictor
influencing the winter precipitation over the U.S. To assess
the skill of each model under ENSO conditions, we use the
forecasted Nino3.4 which is obtained by averaging the mean
of the forecasted SST anomaly over 5S–5N and 170W–
120W from the ocean models of the CGCM. Table S1 of the
auxiliary material gives the details of the ocean‐atmospheric
models used in the study.1 El Nino (Nino3.4 > 0.5), La Nina
(Nino3.4 <− 0.5) and neutral conditions (∣Nino 3.4∣ ≤ 0.5)
are identified for each model based on the forecasted

Nino3.4. Thus, the total number of El Nino, La Nina and
neutral years are different for each model.
[7] Observed monthly precipitation at 0.5° × 0.5° available

from University of East Anglia, Climate Research Unit [New
et al., 2000], is used to assess the skill of each model. Grid
points (0.5° × 0.5°) of monthly precipitation was spatially
averaged to map the grid points of the CGCMs (2.5° × 2.5°).
In addition to this, we also use the historical Nino3.4, which is
obtained from the Kaplan’s SST database to assess the skill in
forecasting Nino3.4 over 46 years (1960–2005).

3. Methodology

[8] One source of error in forecasting precipitation arises
from the error in forecasting the SSTs. Given that SSTs in
the tropical Pacific plays an important role in predicting the
precipitation, we associate the error in forecasting Nino3.4
with the error of winter precipitation forecasts available
from CGCMs. Figure 1 shows the correlation between the
squared error in forecasting Nino3.4 and the squared error in
forecasting DJF seasonal average precipitation over 37
(1960–1996) years. The correlation that is statistically sig-
nificant at 95% confidence interval is 0.33. The correlation
is positive at many grid points, but significant primarily over
certain grid points in Northeast, South and Southwest re-
gions of the U.S. This clearly indicates the association of
precipitation forecasts error to the error in predicting the
conditioning state‐Nino3.4. Thus, by assessing the skill of
CGCMs conditioned on forecasted Nino3.4, we intend to
develop a more objective assessment on combining multiple
CGCMs under forecasted SSTs.

3.1. Multimodel Combination Algorithm

[9] In this section, we briefly outline the modified mul-
timodel combination methodology of DS10 to combine

Figure 1. Correlation between squared errors in forecasting DJF Nino3.4 with the squared errors in forecasting DJF pre-
cipitation for 37 years over the U.S for four different CGCMs. The significant correlation at 95% confidence interval is 0.33.

1Auxiliary materials are available in the HTML. doi:10.1029/
2010GL044989.
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CGCMs conditioned on the forecasted Nino3.4. Figure S1
provides a flow chart of the algorithm that combines ter-
cile forecasts from multiple CGCMs. Tercile categories are
computed from the ensembles of CGCMs after removal of
systematic bias (i.e., each ensemble is represented as
anomaly from the model’s seasonal climatology). The
squared error in forecasting the observed precipitation from
each model is computed for each year over the calibration
period (1960–1996). Considering forecasted Nino 3.4 from
each model as the predictor that influences the winter pre-
cipitation over the U.S we identify ‘K’ similar conditions to
the current Nino3.4 condition. Based on the mean square
error (MSE) computed over ‘K’ neighbors, weights (wt,K

m in
Figure S1) for each model are computed for each year. The
weights for each model are combined with the models’ ter-
cile probabilities to compute the multimodel tercile proba-
bilities. Thus, the weights for each model vary according to
the forecasted ENSO conditions. Using the algorithm in
Figure S1, we develop five multimodel combinations of
winter precipitation forecasts for 200 grid points over the U.S.

3.2. Identification of Similar Predictor Conditions
Based on Forecasted Nino3.4

[10] Table S2 provides brief description on the different
multimodel schemes considered in the study. Two multi-

model (MM) schemes, MM1, MM2, are developed by em-
ploying fixed neighbors ‘K’, which vary conditioned on the
forecasted ENSO state for each model (see Table S3 for
values K1, K2 and K3, where K1 = neighbors used if the
forecasted Nino3.4 > 0.5, K2 = neighbors used if the fore-
casted Nino3.4 < 0.5 and K3= neighbors used if ∣forecasted
Nino3.4∣ ≤ 0.5) to obtain the MSE under each scheme. It is
important to note that the number of identified neighbors
will be different for each model. Under multimodel MM1,
the weights for each month (N, D, J and F) are estimated
based on the MSE of each CGCM in predicting precipitation
for that month resulting in different weights for each month.
Under MM2, weights are developed based on the MSE in
predicting the seasonal (NDJF) average precipitation fore-
casts. Thus, under this scheme, the weights for (N, D, J and
F) for each month in a given year are equal.
[11] Based on the forecasted Nino3.4 by each CGCM over

the validation period (1997–2005), values of K provided in
Table S3 are used to estimate the MSE of each CGCM in
predicting precipitation over the calibration period (1960–
1996). MSE obtained for each model are converted into
weights for multimodel combination. The weights are then
multiplied by the tercile probabilities of the individual
models to develop multimodel tercile forecasts. For addi-
tional details and a complete discussion on the multimodel
combination methodology, see DS10.
[12] We also developed multimodel forecasts by pooling

(MMp) and by overall skill (MM1
OS, MM2

OS) in order to have
a baseline comparison with some of the commonly em-
ployed techniques in developing multimodel combinations
[Doblas‐Reyes et al., 2000; Rajagopalan et al., 2002].
Multimodel MMp obtains multimodel ensembles by pooling
all the ensembles from five individual models and clima-
tology. Hence, in this scheme, we have an increased number
of ensembles (82).MM1

OS combines individual models based
on the overall MSE (unconditional of the ENSO state) for
the period 1960–1996 in forecasting N, D, J and F precip-
itation at a given grid point. Under MM2

OS scheme, the
weights are obtained based on the overall MSE in predicting
the NDJF precipitation over the entire calibration period.
MM2

OS is developed analogous to MM2 scheme. Both mul-
timodel schemes (MM1, MM2) combine individual model
forecasts along with climatological ensembles. For clima-
tology, we simply consider observed precipitation at each
grid point over the calibration period and mean monthly/
seasonal values of Nino3.4 as the conditioning variable for
assessing the skill of climatology as a forecasting scheme.
The skill of the multimodel forecasts available for each
month (9 years of N, D, J and F forecasts) is compared with
the skill of individual models’ forecasts using standard ver-
ification measures such as average Rank Probability Score
(RPS) and average Rank Probability Skill Score (RPSS). The
next section discusses the performance of multimodels in
forecasting winter precipitation over the U.S.

4. Results and Analysis

[13] Five multimodel forecasts of winter precipitation are
developed by combining five CGCMs and climatology
based on the methodology described in Section 3. Multi-
model forecasts are represented as tercile probabilities in
200 grid points over the U.S for the four months (N, D, J
and F) during the period 1997–2005.

Figure 2. Reliability diagram for ECMWF model and for
various multimodel combination schemes based on the sea-
sonal skill in forecasting (a) BN and (b) AN categories of
precipitation.
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4.1. Comparison Between Individual Models
and Multimodels

[14] Figure S2 shows the box plot of RPSS for the five
individual CGCMs and for five multimodels over the U.S.
RPSS computes the cumulative squared error between the
categorical forecast probabilities and the observed category
in relevance to a reference forecast. The reference forecast is
usually climatological ensembles that have equal probability
of occurrence under each category. A positive (negative)
score of RPSS indicates that the forecast skill exceeds (less
than) that of the climatological probabilities. We computed
RPSS for both multimodels and individual models using the
tercile probabilities for all the four winter months (i.e., a
total of 36 forecasts= 4 * 9). Figure S2 also shows the
number of grid points that have RPSS greater than zero.
From Figure S2, we can infer that the individual models’
RPSS is lesser than zero in most of the grid points which
implies that the skill of the CGCMs is poorer than clima-
tology. On the other hand, all the five multimodels perform
better than CGCMs with more grid points having positive
RPSS in forecasting winter precipitation. Among the mul-
timodels, we infer thatMM1,MM2,MM1

OS andMM2
OS perform

similarly with MMp having fewer number of grid points indi-
cating better than climatology. Among the individual models,
ECMWF perform better than other CGCMs in forecasting
winter precipitation. Hence, further analyses in quantifying the
improvements resulting from multimodels will focus only on
comparing with the performance of ECMWF.

4.2. Reliability and Resolution of Multimodel Forecasts

[15] Reliability diagrams provide information on the cor-
respondence between the forecasted probabilities for a par-
ticular category (e.g., above‐normal (AN), normal (N) and
below‐normal (BN) categories) and how frequently that

category is observed under the issued forecasted probability.
Figures 2a and 2b compare the reliabilities of two multi-
models (MM2, andMM2

OS ), with the reliabilities of ECMWF
in forecasting precipitation for BN and AN categories
respectively. We did not consider MMp since it did not
reduce the RPS over many grid points in comparison to the
rest of the multimodels in forecasting precipitation.
[16] For developing reliability plots, the tercile probabil-

ities for 36 forecasts under each category are grouped at an
interval of 0.1 over all grid points (36 * 200 = 7200 fore-
casts for a tercile category for each model). The observed
category is also recorded using which the observed relative
frequency under each forecasted probability is calculated for
each tercile category. Inset in each reliability plots show the
attribute diagram indicating the logarithm of the number of
forecasts that fell under each forecast probability bin for a
given model.
[17] From Figure 2, we can see that the individual model

forecasts are overconfident and have lower resolution (i.e.,
the squared error between the observed relative frequency of
the forecast and the climatological probability (1/3)). On the
other hand, we observe that the multimodels improve the
reliability of forecasts showing better correspondence
between forecasted probabilities and their observed relative
frequencies. We can also observe from Figure 2b (AN cat-
egory) that both individual model and multimodels are
overconfident. But, MM2, performs better than MM2

OS and
ECMWF. This can be seen from the attribute diagram which
clearly shows reduced number of forecasts from MM2 under
high forecast probabilities. (Reliability diagram for multi-
models MM1 and MM1

OS are not shown for better readability
and clarity of Figure 2b). In addition to this, we also
computed the average Brier Score (BS) of multimodel
forecasts and ECMWF. BS summarizes the mean squared
error in categorical forecast probabilities. We observed

Figure 3. Performance of multimodels and individual models, expressed as RPSS, in forecasting NDJF winter precipita-
tion. Grid points with no markers, triangle and open circle indicate the best performing model (having the highest RPSS)
being individual CGCMs, multimodels (MM1, MM2) and existing multimodel techniques respectively.
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(results not shown), that all the multimodels (with the
exception of MMp) have smaller reliability score in com-
parison to the reliability scores of ECMWF under both
tercile categories, thereby contributing to the reduction in
BS. In the next section, we compare the performance of five
multimodel forecasts under different calibration periods and
the improvements resulting from multimodel combination
over the U.S. particularly for grid points that exhibit positive
RPSS.

4.3. Performance of Multimodel Forecasts Under
Different Calibration Periods

[18] Figure 3 shows the skill, expressed as RPSS, in
forecasting winter (NDJF aggregate, i.e., 36 forecasts) pre-
cipitation with each grid point’s RPSS being indicated by
the best performing individual model or the multimodel.
From Figure 3, we can clearly understand that multimodels
developed in the study perform better than the individual
models and over the existing multimodel combination
techniques. Among the multimodels, MM2 seems to be best
performing multimodel in forecasting precipitation. Under
MM2 scheme, we basically assign higher weights if a given
model performs well under ENSO conditions. From Figure
3, we can also understand that the improvements resulting
from multimodel combination in forecasting NDJF precip-
itation predominantly lies over South and Eastern part of the
country as well as over few grid points in the western U.S,
particularly over Northern California and Portland. The
reason for this improved performance is partly due to strong
association between ENSO conditions and the observed
winter precipitation (see Figure 1) over these regions. The
presented algorithm also assigns higher weights for clima-
tology and lower weights for CGCM if the skill of a CGCM
is poor under ENSO conditions (see Figure 10 of DS10).
[19] In addition to this, we also analyzed the performance

of multimodels based on different number of years of cali-
bration data. We observed that as the length of calibration
period increases, the performance of MM2 forecasts
improved with increased number of grid points having the
highest RPSS. Thus, combining multiple CGCMs condi-
tioned on their skill in predicting under ENSO state offers a
new strategy to develop improved multimodel forecasts.

5. Summary

[20] A multimodel combination methodology is presented
to combine multiple models conditioned on its performance
under ENSO conditions and evaluated for combining ret-
rospective winter precipitation forecasts from CGCMs over
the U.S. Considering forecasted Nino3.4 from each model
as the primary predictor influencing the winter precipitation,
the study combines five CGCMs with climatological en-
sembles to develop multimodel forecasts over the U.S. Five
different multimodel schemes are developed for the period,
1997–2005, by training the retrospective forecasts available
during 1960–1996. The skill of the multimodel forecasts are
evaluated using RPSS and reliability plots based on the
monthly forecasts available during winter months. The study
clearly shows that all multimodels perform better than

individual models and the proposed multimodel combina-
tion algorithm conditioned on the ENSO state performs
better than multimodel combinations based on pooling and
long‐term skill. We also understand that the proposed
multimodel methodology is dependent on the length of the
calibration period. The main advantage in using this algo-
rithm for multimodel combination is that it assigns higher
weights for climatology and lower weights for CGCM if the
skill of a CGCM is poor under ENSO conditions. Thus,
combining multiple models based on their skill in predicting
under a given predictor state(s) provides an attractive strat-
egy to develop improved climate forecasts.
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